Search results

Search for "light emitting diode" in Full Text gives 31 result(s) in Beilstein Journal of Nanotechnology.

Hybrid spin-crossover nanostructures

  • Carlos M. Quintero,
  • Gautier Félix,
  • Iurii Suleimanov,
  • José Sánchez Costa,
  • Gábor Molnár,
  • Lionel Salmon,
  • William Nicolazzi and
  • Azzedine Bousseksou

Beilstein J. Nanotechnol. 2014, 5, 2230–2239, doi:10.3762/bjnano.5.232

Graphical Abstract
  • on hybrid SCO nanostructures Luminescent devices Matsuda et al. proposed a synthesis strategy that exploits the synergy between the charge carrier orbitals of a SCO complex and a light emitting material. They developed a concept for an organic light emitting diode (OLED) that consists of a 50 nm
PDF
Album
Review
Published 25 Nov 2014

Noise performance of frequency modulation Kelvin force microscopy

  • Heinrich Diesinger,
  • Dominique Deresmes and
  • Thierry Mélin

Beilstein J. Nanotechnol. 2014, 5, 1–18, doi:10.3762/bjnano.5.1

Graphical Abstract
  • resonance frequency f0 = 61.835 kHz and the Q-factor Q = 22800 were determined in vacuum by recording a resonance curve with the built in function of the Nanonis controller. The optical beam deflection detection uses a 20 mW Superluminescent (TM) light emitting diode that was operated at an intensity of 7
PDF
Album
Full Research Paper
Published 02 Jan 2014

A nano-graphite cold cathode for an energy-efficient cathodoluminescent light source

  • Alexander N. Obraztsov,
  • Victor I. Kleshch and
  • Elena A. Smolnikova

Beilstein J. Nanotechnol. 2013, 4, 493–500, doi:10.3762/bjnano.4.58

Graphical Abstract
  • principles of nature, the energy efficient generation of light requires the usage of extremely toxic materials (mercury, heavy metals and others). This leads to the necessity of expensive and laborious efforts to dispose of the mercury-based fluorescent devices and the semiconductor-based light emitting
  • diode (LED) lamps (see, e.g., [1][2]). Moreover, the spectral characteristics of the light produced by these fluorescent and LED lamps are often not perceived as pleasing in contrast to incandescent lamps. But incandescent bulbs convert only 5% of the consumed energy into light and are thus considered
PDF
Album
Full Research Paper
Published 28 Aug 2013

Thermal noise limit for ultra-high vacuum noncontact atomic force microscopy

  • Jannis Lübbe,
  • Matthias Temmen,
  • Sebastian Rode,
  • Philipp Rahe,
  • Angelika Kühnle and
  • Michael Reichling

Beilstein J. Nanotechnol. 2013, 4, 32–44, doi:10.3762/bjnano.4.4

Graphical Abstract
  • (Nanosurf AG, Liestal, Switzerland) for frequency demodulation. The AFM/STM setup has been modified by replacing the light source (light-emitting diode exchanged with a laser diode) and using optimised preamplifiers. Preamplifiers have been optimised for low-noise operation at frequencies around 100 kHz and
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2013

Reduced electron recombination of dye-sensitized solar cells based on TiO2 spheres consisting of ultrathin nanosheets with [001] facet exposed

  • Hongxia Wang,
  • Meinan Liu,
  • Cheng Yan and
  • John Bell

Beilstein J. Nanotechnol. 2012, 3, 378–387, doi:10.3762/bjnano.3.44

Graphical Abstract
  • spectroscopy (EIS) of the DSCs was measured in the frequency range of 50,000–0.1 Hz at room temperature by a Versa-stat 3 electrochemical workstation (Princeton Applied Research). The EIS measurement was carried out under illumination, which was provided by a light emitting diode (LED, 627 nm) at open-circuit
PDF
Album
Full Research Paper
Published 07 May 2012

Determination of object position, vortex shedding frequency and flow velocity using artificial lateral line canals

  • Adrian Klein and
  • Horst Bleckmann

Beilstein J. Nanotechnol. 2011, 2, 276–283, doi:10.3762/bjnano.2.32

Graphical Abstract
  • silicone bars was comparable to the density of water to ensure that only the motion of the fluid affected the bending of the bar. For the detection of canal fluid motion, one end of each silicone bar was illuminated with an infrared light emitting diode (LED, SFH420). Light, leaving the opposite end of the
PDF
Album
Full Research Paper
Published 06 Jun 2011
Other Beilstein-Institut Open Science Activities