Search results

Search for "liposomes" in Full Text gives 59 result(s) in Beilstein Journal of Nanotechnology.

Nanomedicines against Chagas disease: a critical review

  • Maria Jose Morilla,
  • Kajal Ghosal and
  • Eder Lilia Romero

Beilstein J. Nanotechnol. 2024, 15, 333–349, doi:10.3762/bjnano.15.30

Graphical Abstract
  • still required regarding a realistic use of nanomedicines effective against CD. Keywords: benznidazole; liposomes; nanocrystals; nanomedicines; nanoparticles; Trypanosoma cruzi; Introduction Nanomedicines are used to solve the problems posed by poor solubility and/or permeability and high toxicity of
  • countries’ institutions (Brazil and Argentina), and private pharmaceutical companies. The project started proposing a sublingual formulation of BNZ within liposomes or lipid nanoparticles, assuming the intact formulations could reach the blood, avoid the hepatic first-pass metabolism, and reduce the
  • toxicity of BNZ. The project, however, failed in its attempt to incorporate BNZ into liposomes, while lipid nanoparticles could not be formulated into sublingual tablets. The project changed to formulate BNZ/hydroxypropyl-β-cyclodextrin complexes. These complexes were prepared on a scale seven times larger
PDF
Album
Review
Published 27 Mar 2024

Nanocarrier systems loaded with IR780, iron oxide nanoparticles and chlorambucil for cancer theragnostics

  • Phuong-Thao Dang-Luong,
  • Hong-Phuc Nguyen,
  • Loc Le-Tuan,
  • Xuan-Thang Cao,
  • Vy Tran-Anh and
  • Hieu Vu Quang

Beilstein J. Nanotechnol. 2024, 15, 180–189, doi:10.3762/bjnano.15.17

Graphical Abstract
  • cytoskeleton and chlorambucil (CHL) inhibits DNA synthesis. These drugs can be encapsulated inside nanoparticles for administration to increase the stability of the medication in circulation and therapeutic efficacy. For example, doxorubicin can be inserted into liposomes and paclitaxel attaches to the protein
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2024

Berberine-loaded polylactic acid nanofiber scaffold as a drug delivery system: The relationship between chemical characteristics, drug-release behavior, and antibacterial efficiency

  • Le Thi Le,
  • Hue Thi Nguyen,
  • Liem Thanh Nguyen,
  • Huy Quang Tran and
  • Thuy Thi Thu Nguyen

Beilstein J. Nanotechnol. 2024, 15, 71–82, doi:10.3762/bjnano.15.7

Graphical Abstract
  • been employed to produce nanoformulations of drugs for endowing a better therapeutic effect. The nanoformulations for drug delivery can be designed using nanocarrier systems, including organic materials (liposomes, nanoemulsions, nanomicelles, and nanofibers) and inorganic nanoparticles (gold, silver
PDF
Album
Supp Info
Full Research Paper
Published 12 Jan 2024

Curcumin-loaded nanostructured systems for treatment of leishmaniasis: a review

  • Douglas Dourado,
  • Thayse Silva Medeiros,
  • Éverton do Nascimento Alencar,
  • Edijane Matos Sales and
  • Fábio Rocha Formiga

Beilstein J. Nanotechnol. 2024, 15, 37–50, doi:10.3762/bjnano.15.4

Graphical Abstract
  • , lipid nanoparticles, nano- and microemulsions, liposomes, or metallic nanoparticles [68]. Costa-Lima and colleagues incorporated bisnaphthalimidopropyldiaaminooctane (BNIPDaoct) into PLGA polymeric nanoparticles and obtained particles with sizes around 150 nm, with encapsulation efficiency around 90
  • liposomes: 20–100 nm and large liposomes: >100 nm) are capable of loading both hydrophilic and lipophilic drugs [82][83]. Leishmanial drugs, such as miltefosine [84], buparvaquone [85], nitazoxanide [86], artemisinin [75], berberine [87], and paromomycin [88] have already been successfully loaded into
PDF
Album
Review
Published 04 Jan 2024

Nanotechnological approaches in the treatment of schistosomiasis: an overview

  • Lucas Carvalho,
  • Michelle Sarcinelli and
  • Beatriz Patrício

Beilstein J. Nanotechnol. 2024, 15, 13–25, doi:10.3762/bjnano.15.2

Graphical Abstract
  • homogenization); (2) low-energy methods, which requires the precipitation of nanoparticles from homogeneous systems (such as microemulsions); and (3) methods based on organic solvents (emulsification–diffusion method) [35]. Liposomes are vesicles composed of a phospholipid and cholesterol with an aqueous core
  • molecule, and excellent biocompatibility and safety [38]. Liposomes can also be modified to selectively deliver a drug to a specific site. This is very valuable because it can reduce potential side effects and increase the maximum tolerated dose, which improves therapeutic benefits [39]. For example
  • liposomes, exposes them to degradation by stomach acid, bile salts, and enzymes. Consequently, in in vivo models, intact liposomes may encounter challenges to reach the bloodstream owing to the adverse conditions of the stomach [42]. This elucidates why, in in vitro tests, the author exclusively assessed
PDF
Album
Supp Info
Review
Published 03 Jan 2024

Fluorescent bioinspired albumin/polydopamine nanoparticles and their interactions with Escherichia coli cells

  • Eloïse Equy,
  • Jordana Hirtzel,
  • Sophie Hellé,
  • Béatrice Heurtault,
  • Eric Mathieu,
  • Morgane Rabineau,
  • Vincent Ball and
  • Lydie Ploux

Beilstein J. Nanotechnol. 2023, 14, 1208–1224, doi:10.3762/bjnano.14.100

Graphical Abstract
  • of antimicrobial resistance of bacteria [5], this appears as a promising route to deliver antimicrobials while reducing the drug doses and subsequent harmful side effects in antibacterial applications. To this end, different types of ONPs have been used, such as liposomes [6] and nanoparticles (NPs
  • nanoplastics can penetrate and accumulate in bacterial cells [22], thus suggesting that other ONPs may have a similar fate in bacteria. In general, the mechanisms of action of ONPs used as drug nanocarriers in antibacterial applications are expected to vary with the nanoparticle type (e.g., liposomes or PLGA
  • , but the penetration of liposomes into the cell was not proved [25]. In general, organic nanocarriers are often reported to penetrate mammalian cells infected by bacteria, improving the drug accumulation in these eukaryotic cells and increasing the antibacterial efficiency of the drug [3][4][9][26
PDF
Album
Supp Info
Full Research Paper
Published 22 Dec 2023

Elasticity, an often-overseen parameter in the development of nanoscale drug delivery systems

  • Agnes-Valencia Weiss and
  • Marc Schneider

Beilstein J. Nanotechnol. 2023, 14, 1149–1156, doi:10.3762/bjnano.14.95

Graphical Abstract
  • -loaded gelatin nanoparticles imaged in the quantitative imaging mode with a JPK NanoWizard III in Milli-Q® water at 37 °C, as well as the extracted Young’s modulus map as previously described [22] (Figure 1). Takechi-Haraya et al. showed that for liposomes both methods deliver the same results [21]. The
  • with a model hydrogel that there is a higher penetration for more deformable extracellular vesicles from mouse mesenchymal stromal cells [37]. A second study, from Yu et al., shows rigidity-dependent penetration of lipid NPs in the mucus layer of rat intestinal mucus. Liposomes were either hollow or
  • particles showed better cellular uptake if no mucus layer was present. In contrast to this, the cellular uptake for semielastic particles was not significantly affected by the presence of a mucus layer [38]. Liposomes with PLGA cores were used by Yu et al. to increase the stiffness in combination with
PDF
Album
Perspective
Published 23 Nov 2023

Nanostructured lipid carriers containing benznidazole: physicochemical, biopharmaceutical and cellular in vitro studies

  • Giuliana Muraca,
  • María Esperanza Ruiz,
  • Rocío C. Gambaro,
  • Sebastián Scioli-Montoto,
  • María Laura Sbaraglini,
  • Gisel Padula,
  • José Sebastián Cisneros,
  • Cecilia Yamil Chain,
  • Vera A. Álvarez,
  • Cristián Huck-Iriart,
  • Guillermo R. Castro,
  • María Belén Piñero,
  • Matias Ildebrando Marchetto,
  • Catalina Alba Soto,
  • Germán A. Islan and
  • Alan Talevi

Beilstein J. Nanotechnol. 2023, 14, 804–818, doi:10.3762/bjnano.14.66

Graphical Abstract
  • efficiently. Many developments have been made in the past years resulting in lipid formulations such as liposomes, solid lipid nanoparticles (SLNs), and nanoemulsions, which increased the apparent solubility of BNZ and its efficacy against parasites [17]. Remarkably, oil-in-water nanoemulsions improved the
PDF
Album
Supp Info
Full Research Paper
Published 28 Jul 2023

Nanotechnology – a robust tool for fighting the challenges of drug resistance in non-small cell lung cancer

  • Filip Gorachinov,
  • Fatima Mraiche,
  • Diala Alhaj Moustafa,
  • Ola Hishari,
  • Yomna Ismail,
  • Jensa Joseph,
  • Maja Simonoska Crcarevska,
  • Marija Glavas Dodov,
  • Nikola Geskovski and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2023, 14, 240–261, doi:10.3762/bjnano.14.23

Graphical Abstract
  • surface, triggered by protease degradation after tumor homing by the EPR effect [112]. Mesoporous silica vesicles (MSVs; dav = 3 μm) with high affinity to tumor vasculature were also described by Blanco et al. as a platform for the triggered release of various therapeutic nanoscale vectors (liposomes
PDF
Album
Review
Published 22 Feb 2023

Facile preparation of Au- and BODIPY-grafted lipid nanoparticles for synergized photothermal therapy

  • Yuran Wang,
  • Xudong Li,
  • Haijun Chen and
  • Yu Gao

Beilstein J. Nanotechnol. 2022, 13, 1432–1444, doi:10.3762/bjnano.13.118

Graphical Abstract
  • delivery systems through van der Waals forces, hydrogen bonds, π–π stacking, or electrostatic or hydrophobic interactions [24]. Several BODIPYs have been reported to be loaded into liposomes for cancer therapy [25]. Therefore, we speculated that BODIPY can be associated with our previously reported
PDF
Album
Full Research Paper
Published 02 Dec 2022

Microneedle-based ocular drug delivery systems – recent advances and challenges

  • Piotr Gadziński,
  • Anna Froelich,
  • Monika Wojtyłko,
  • Antoni Białek,
  • Julia Krysztofiak and
  • Tomasz Osmałek

Beilstein J. Nanotechnol. 2022, 13, 1167–1184, doi:10.3762/bjnano.13.98

Graphical Abstract
  • introduced into systems whose purpose is to provide the expected concentration in the treated tissue for the desired time period. The most frequently studied and described are liposomes [60][61], micelles [60][62], microparticles [63][64][65], nanoparticles [66][67], micro- [68][69], and nanoemulsions [70
PDF
Album
Review
Published 24 Oct 2022

Ethosomal (−)-epigallocatechin-3-gallate as a novel approach to enhance antioxidant, anti-collagenase and anti-elastase effects

  • Çiğdem Yücel,
  • Gökçe Şeker Karatoprak,
  • Sena Yalçıntaş and
  • Tuğba Eren Böncü

Beilstein J. Nanotechnol. 2022, 13, 491–502, doi:10.3762/bjnano.13.41

Graphical Abstract
  • noted that the degradation of EGCG under UV was delayed by the ETHs and by the incorporation of tocopherol as an antioxidant in the formulation [35]. In another study, cream-based formulations of different vesicular systems (liposomes, ethosomes, and transfersomes) containing Curcuma longa extract were
  • liposomes, which have limited skin penetration and mostly remain in the upper layer of the stratum corneum. The release of the therapeutic agent occurs by the fusion of these vesicles with the cell membranes in the deeper layers of the skin [11]. ETHs have been reported to help many active substances to be
  • in comparison to studies using liposomes. An improvement of 81.84% was achieved in the area affected by psoriasis [34]. Likewise, it can be said that better therapeutic results are obtained with ethosomal-based systems. Kaur and Saraf prepared and characterized different vesicular systems (liposomes
PDF
Album
Full Research Paper
Published 31 May 2022

Micro- and nanotechnology in biomedical engineering for cartilage tissue regeneration in osteoarthritis

  • Zahra Nabizadeh,
  • Mahmoud Nasrollahzadeh,
  • Hamed Daemi,
  • Mohamadreza Baghaban Eslaminejad,
  • Ali Akbar Shabani,
  • Mehdi Dadashpour,
  • Majid Mirmohammadkhani and
  • Davood Nasrabadi

Beilstein J. Nanotechnol. 2022, 13, 363–389, doi:10.3762/bjnano.13.31

Graphical Abstract
  • delivery [50], in vitro diagnosis [51], in vivo imaging [52], and TE purposes. Various NPs can be prepared in the form of liposomes, nanocapsules, micelles, dendrimers, and nanospheres based on their composition and method of preparation. Basically, NPs are designed to function as carriers for bioactive
PDF
Album
Review
Published 11 Apr 2022

Coordination-assembled myricetin nanoarchitectonics for sustainably scavenging free radicals

  • Xiaoyan Ma,
  • Haoning Gong,
  • Kenji Ogino,
  • Xuehai Yan and
  • Ruirui Xing

Beilstein J. Nanotechnol. 2022, 13, 284–291, doi:10.3762/bjnano.13.23

Graphical Abstract
  • antioxidant peptides by proteases. The combination of liposomes or polymers with different payload materials has been reported, for example, PEG-modified liposomes loaded with resveratrol, layer-by-layer-coated gelatin nanoparticles, or Gelucire-based solid lipid and polymeric micelles [14][15][16][17][18][19
PDF
Album
Supp Info
Correction
Full Research Paper
Published 01 Mar 2022

Use of nanosystems to improve the anticancer effects of curcumin

  • Andrea M. Araya-Sibaja,
  • Norma J. Salazar-López,
  • Krissia Wilhelm Romero,
  • José R. Vega-Baudrit,
  • J. Abraham Domínguez-Avila,
  • Carlos A. Velázquez Contreras,
  • Ramón E. Robles-Zepeda,
  • Mirtha Navarro-Hoyos and
  • Gustavo A. González-Aguilar

Beilstein J. Nanotechnol. 2021, 12, 1047–1062, doi:10.3762/bjnano.12.78

Graphical Abstract
  • metabolism, low bioavailability, and fast elimination of the molecule. Considering this, the present work reviews the use of CUR-based nanosystems as anticancer agents, including conventional nanosystems (i.e., liposomes, nanoemulsions, nanocrystals, nanosuspensions, polymeric nanoparticles) and nanosystems
  • anticancer activity, including liposomes, nanoemulsions, nanocrystals, nanosuspensions, and polymeric nanoparticles, as well as dual effect nanosystems which respond to external stimuli (mainly magnetic nanoparticles and photodynamic therapy), in addition to internal ones. Furthermore, key design factors
  • the other hand, it has been reported that NLC have a higher loading capacity and greater stability than SLN. This is mainly attributed to the fact that NLC have an imperfect crystalline structure and due to the presence of liquid lipids it prevents the expulsion of the drug [61][66]. Liposomes
PDF
Album
Review
Published 15 Sep 2021

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
  • , and sonoporation. These effects can result in the release of encapsulated drugs or genes at the site of interest as well as cell death and considerable image enhancement. The present review discusses US-responsive theranostic nanomaterials under the following categories: MBs, micelles, liposomes
  • efficiency [1]. To overcome the limitations and drawbacks of conventional drugs, such as uncontrolled release and nonspecific biodistribution, drug delivery systems (DDS) such as liposomes, polymeric nanoparticles, or nanoemulsions (NEs) have been extensively explored. However, even conventional DDS often
  • therapeutic efficacy, and decrease undesirable systemic side effects [2]. Smart DDS (also known as stimulus-responsive drug delivery platforms) can be traced back to the late 1970s when thermosensitive liposomes were introduced. These liposomes could locally release drugs in response to externally applied
PDF
Album
Review
Published 11 Aug 2021

Recent progress in magnetic applications for micro- and nanorobots

  • Ke Xu,
  • Shuang Xu and
  • Fanan Wei

Beilstein J. Nanotechnol. 2021, 12, 744–755, doi:10.3762/bjnano.12.58

Graphical Abstract
  • magnetic helices have been shown to be used as drug carriers delivering liposomes loaded with drugs or DNA to single cells [80]. This reflects the prominent role of tubular and helical spermbots and microrobotic for research on medical treatment. Different from the magnetic tubular and helical structures
PDF
Album
Review
Published 19 Jul 2021

The impact of molecular tumor profiling on the design strategies for targeting myeloid leukemia and EGFR/CD44-positive solid tumors

  • Nikola Geskovski,
  • Nadica Matevska-Geshkovska,
  • Simona Dimchevska Sazdovska,
  • Marija Glavas Dodov,
  • Kristina Mladenovska and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2021, 12, 375–401, doi:10.3762/bjnano.12.31

Graphical Abstract
  • -targeting liposomes were among the first formulation types that employed this specific mechanism. Allen et al. reported that the lipid composition greatly affected the bone marrow affinity of the liposomes. The authors noted that phosphatidylserine and phosphatidylcholine increased the uptake of the
  • liposomes in cultured BM macrophages [26]. Schettini et al. made an attempt at BM targeting by incorporating negatively charged lipids in the liposomes. However, the employed lipid components (1,2-distearoyl-sn-glycero-3-phosphocholine, cholesterol, and dicetylphosphate) did not promote selective BM uptake
  • [27]. Moreover, the authors reported that the size reduction of the liposomes produced better results. The surface modification of liposomes with an anionic amphiphile (N-(3-carboxy-1-oxopropyl)-ʟ-glutamic acid 1,5-bis(hexadecyl ester)), reported by Sou and co-workers, resulted in significant
PDF
Album
Review
Published 29 Apr 2021

PEG/PEI-functionalized single-walled carbon nanotubes as delivery carriers for doxorubicin: synthesis, characterization, and in vitro evaluation

  • Shuoye Yang,
  • Zhenwei Wang,
  • Yahong Ping,
  • Yuying Miao,
  • Yongmei Xiao,
  • Lingbo Qu,
  • Lu Zhang,
  • Yuansen Hu and
  • Jinshui Wang

Beilstein J. Nanotechnol. 2020, 11, 1728–1741, doi:10.3762/bjnano.11.155

Graphical Abstract
  • modification with PEG or PEI [40]. It should be noted that LE and EE of CNT carriers in this study are higher than those of other nanocarriers such as mesoporous silica nanoparticles (MSNs) or liposomes [39]. In vitro drug release Due to the encapsulation in the nanocarriers after drug loading, a premature
PDF
Album
Full Research Paper
Published 13 Nov 2020

Applications of superparamagnetic iron oxide nanoparticles in drug and therapeutic delivery, and biotechnological advancements

  • Maria Suciu,
  • Corina M. Ionescu,
  • Alexandra Ciorita,
  • Septimiu C. Tripon,
  • Dragos Nica,
  • Hani Al-Salami and
  • Lucian Barbu-Tudoran

Beilstein J. Nanotechnol. 2020, 11, 1092–1109, doi:10.3762/bjnano.11.94

Graphical Abstract
  • microscopy (EM), iron oxide magnetic beads for the separation of cells and molecules, gold and silver nanoparticles as fiducials for EM, for immuno-EM labeling and surface-enhanced Raman spectroscopy, or for gene transfection, liposomes for drug delivery, and gadolinium or iron oxide nanoparticles for
  • , dendrimers, albumin, silicones, liposomes, poloxamer, poly-ʟ-lysine, sugars, or polyethylene glycol (PEG) [27][28][29][30][31][32][33]. Hyperthermia treatment for cancer therapy is still under scrutiny. It shows great potential due to the property of SPIONs to produce local heat when placed under an
  • infiltrated these macrophages in spheroids of tumor cells and destroyed the cells by hyperthermia in vitro [125]. Moghimi et al. [124] found that liposomes and polymeric nanospheres used as nanocarriers are also opsonized, which promotes their clearance by macrophage activation. The opsonization also leads to
PDF
Album
Review
Published 27 Jul 2020

Key for crossing the BBB with nanoparticles: the rational design

  • Sonia M. Lombardo,
  • Marc Schneider,
  • Akif E. Türeli and
  • Nazende Günday Türeli

Beilstein J. Nanotechnol. 2020, 11, 866–883, doi:10.3762/bjnano.11.72

Graphical Abstract
  • nanoparticles (AuNPs); blood–brain barrier (BBB); drug delivery; liposomes; nanomedicine; polymeric nanoparticles; solid lipid nanoparticles; superparamagnetic iron oxide nanoparticles (SPIONs); Introduction Neurological disorders and brain diseases are real burdens for modern societies and healthcare systems
  • polymeric nanoparticles prepared with PBCA and polymers from the poly(ethylene) family such as poly(lactic acid) (PLA) and poly(lactic-co-glycolic acid) (PLGA) [25][26]. Liposomes and other lipidic nanoparticles have also been reported as able to pass the BBB [27], as well as protein-based nanoparticles
  • and, secondly, angiopep-2 increased the accumulation of nanoparticles in glioma cells thanks to recognition of the LRP1 on the glioma cells surface. Lipid-based nanoparticles Liposomes: Liposomes are well-known and well-studied nanocarrier systems. They are composed of a lipid bilayer surrounding a
PDF
Album
Review
Published 04 Jun 2020

Multilayer capsules made of weak polyelectrolytes: a review on the preparation, functionalization and applications in drug delivery

  • Varsha Sharma and
  • Anandhakumar Sundaramurthy

Beilstein J. Nanotechnol. 2020, 11, 508–532, doi:10.3762/bjnano.11.41

Graphical Abstract
  • inorganic particles, NPs, proteins, biological cells, liposomes, DNA, dyes and drugs have served as suitable sacrificial templates [22]. After serving as a support to develop multilayer assembly, the core is dissolved by using suitable solvents. Organic cores such as melamine formaldehyde (MF) and
PDF
Album
Review
Published 27 Mar 2020

Brome mosaic virus-like particles as siRNA nanocarriers for biomedical purposes

  • Alfredo Nuñez-Rivera,
  • Pierrick G. J. Fournier,
  • Danna L. Arellano,
  • Ana G. Rodriguez-Hernandez,
  • Rafael Vazquez-Duhalt and
  • Ruben D. Cadena-Nava

Beilstein J. Nanotechnol. 2020, 11, 372–382, doi:10.3762/bjnano.11.28

Graphical Abstract
  • ]. The accumulation of nanoparticles in tumors, either passively or directed, is extensively documented [14]. Thus, there are multiple efforts to design nanoparticles that function as nanovehicles, mainly composed of liposomes, synthetic polymers, dendrimers, and virus-like particles (VLPs) [13][15
PDF
Album
Supp Info
Full Research Paper
Published 20 Feb 2020

Phase inversion-based nanoemulsions of medium chain triglyceride as potential drug delivery system for parenteral applications

  • Eike Folker Busmann,
  • Dailén García Martínez,
  • Henrike Lucas and
  • Karsten Mäder

Beilstein J. Nanotechnol. 2020, 11, 213–224, doi:10.3762/bjnano.11.16

Graphical Abstract
  • drug delivery systems such as solid lipid or polymeric nanoparticles, nanocapsules, liquid nanoemulsions, liposomes and micelles can be used to carry poorly water soluble ingredients of pharmaceuticals for parenteral applications [1][2][3]. Thereby, the physical entrapment of the active ingredients
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2020

Rational design of block copolymer self-assemblies in photodynamic therapy

  • Maxime Demazeau,
  • Laure Gibot,
  • Anne-Françoise Mingotaud,
  • Patricia Vicendo,
  • Clément Roux and
  • Barbara Lonetti

Beilstein J. Nanotechnol. 2020, 11, 180–212, doi:10.3762/bjnano.11.15

Graphical Abstract
PDF
Album
Review
Published 15 Jan 2020
Other Beilstein-Institut Open Science Activities