Search results

Search for "lubrication" in Full Text gives 34 result(s) in Beilstein Journal of Nanotechnology.

Physical principles of fluid-mediated insect attachment - Shouldn’t insects slip?

  • Jan-Henning Dirks

Beilstein J. Nanotechnol. 2014, 5, 1160–1166, doi:10.3762/bjnano.5.127

Graphical Abstract
  • a continuous Newtonian fluid film, the friction forces between the substrates can in general be described by using two basic principles: the surface tension of the mediating fluid and the laws of hydrodynamic lubrication [55][56]. Surface tension The contribution of the surface tension of the
  • insects, cockroaches and ants [16][46][57][59]. Surface tension alone is thus unlikely to explain the high friction forces generated by the adhesive pads of insects. Hydrodynamic or boundary lubrication? Similar to the viscous forces in adhesion, the “hydrodynamic lubrication” friction model takes into
  • generated by fluid layers thinner than 5 to 10 molecular layers are usually modeled by using the more complex boundary lubrication theory, in which a decreasing film height and increasing number and area of direct contacts between the two substrates actually increase the friction coefficient [56][64][65
PDF
Album
Video
Review
Published 28 Jul 2014

Friction behavior of a microstructured polymer surface inspired by snake skin

  • Martina J. Baum,
  • Lars Heepe and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2014, 5, 83–97, doi:10.3762/bjnano.5.8

Graphical Abstract
  • stick-slip phenomenon is very important for technical surfaces under tribological stress, but only little understood and hard to quantify and control. There are many approaches to optimize frictional properties of surfaces and to affect the occurrence of stick-slip, e.g., (1) wet or solid lubrication
PDF
Album
Full Research Paper
Published 24 Jan 2014

Exploring the retention properties of CaF2 nanoparticles as possible additives for dental care application with tapping-mode atomic force microscope in liquid

  • Matthias Wasem,
  • Joachim Köser,
  • Sylvia Hess,
  • Enrico Gnecco and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2014, 5, 36–43, doi:10.3762/bjnano.5.4

Graphical Abstract
  • manipulation, i.e., the collision between the probing tip and the particle, the friction between the particles and the substrate, the role of water when measuring in ambient (lubrication, capillary effects, etc.), electrostatics between them, etc. The high surface to volume ratio of nanoparticles makes them
PDF
Album
Full Research Paper
Published 13 Jan 2014

Effect of normal load and roughness on the nanoscale friction coefficient in the elastic and plastic contact regime

  • Aditya Kumar,
  • Thorsten Staedler and
  • Xin Jiang

Beilstein J. Nanotechnol. 2013, 4, 66–71, doi:10.3762/bjnano.4.7

Graphical Abstract
  • tribological processes is fundamental to many basic and applied problems, such as wetting, capillarity, adhesion, lubrication, sealing, hardness, micro/nanoindentation, atomic-scale probing, surface modification and manipulation [1][2][3]. The contact of two bodies may be defined by the influential parameters
PDF
Album
Full Research Paper
Published 28 Jan 2013

Effect of spherical Au nanoparticles on nanofriction and wear reduction in dry and liquid environments

  • Dave Maharaj and
  • Bharat Bhushan

Beilstein J. Nanotechnol. 2012, 3, 759–772, doi:10.3762/bjnano.3.85

Graphical Abstract
  • ; nanomanipulation; Introduction Nano-objects are continually studied in tribological applications and increasingly in other applications that require controlled manipulation and targeting in liquid environments. The need for suitable forms of lubrication for micro/nanoelectromechanical systems (MEMS/NEMS) and the
PDF
Album
Full Research Paper
Published 15 Nov 2012

Mapping mechanical properties of organic thin films by force-modulation microscopy in aqueous media

  • Jianming Zhang,
  • Zehra Parlak,
  • Carleen M. Bowers,
  • Terrence Oas and
  • Stefan Zauscher

Beilstein J. Nanotechnol. 2012, 3, 464–474, doi:10.3762/bjnano.3.53

Graphical Abstract
  • attributed to hydrodynamic lubrication forces that increase with increasing proximity of the tip to the surface [49]. In regime B, the amplitude of the first harmonic decreases, while that of the second harmonic increases, reflecting the increasing nonlinearity of the initial tip–surface interaction and the
PDF
Album
Supp Info
Letter
Published 26 Jun 2012

Octadecyltrichlorosilane (OTS)-coated ionic liquid drops: Micro-reactors for homogenous catalytic reactions at designated interfaces

  • Xiaoning Zhang and
  • Yuguang Cai

Beilstein J. Nanotechnol. 2012, 3, 33–39, doi:10.3762/bjnano.3.4

Graphical Abstract
  • engineered as extraction solvents, reaction media and drug delivery materials [4][5]. In most IL applications – such as extraction, lubrication, IL super capacitors – the core function of the IL occurs at the ionic liquid–solid interfaces. ILs are different from conventional molecular liquids because no
PDF
Album
Supp Info
Letter
Published 12 Jan 2012

Surface induced self-organization of comb-like macromolecules

  • Konstantin I. Popov,
  • Vladimir V. Palyulin,
  • Martin Möller,
  • Alexei R. Khokhlov and
  • Igor I. Potemkin

Beilstein J. Nanotechnol. 2011, 2, 569–584, doi:10.3762/bjnano.2.61

Graphical Abstract
  • – such an important class of biomolecules as proteoglycans has comblike structure. These molecules are involved in cell signalling and cell surface protection as well as joint lubrication, lung clearance and cartilage stability, cellular matrix integrity [8][9][10][11][12][13]. Comb copolymers also have
PDF
Album
Full Research Paper
Published 12 Sep 2011

Review of "Contact Mechanics and Friction: Physical Principles and Applications" by Valentin L. Popov

  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2011, 2, 57–58, doi:10.3762/bjnano.2.7

Graphical Abstract
  • Stanislav N. Gorb Department of Functional Morphology and Biomechanics, Zoological Institute at the University of Kiel, Am Botanischen Garten 1–9, D-24098 Kiel, Germany 10.3762/bjnano.2.7 Keywords: adhesion; capillarity; contact mechanics; continuum mechanics; friction; lubrication; materials
  • , lubrication, adhesion, capillarity and system dynamics. It provides conceptual and computational tools for researchers in various branches of science which deal with the physics and mechanics of interfaces – from nanotechnology to earthquake research. One of the topics which seems particularly of interest to
PDF
Book Report
Published 25 Jan 2011
Other Beilstein-Institut Open Science Activities