Search results

Search for "microneedles" in Full Text gives 9 result(s) in Beilstein Journal of Nanotechnology.

Industrial perspectives for personalized microneedles

  • Remmi Danae Baker-Sediako,
  • Benjamin Richter,
  • Matthias Blaicher,
  • Michael Thiel and
  • Martin Hermatschweiler

Beilstein J. Nanotechnol. 2023, 14, 857–864, doi:10.3762/bjnano.14.70

Graphical Abstract
  • Remmi Danae Baker-Sediako Benjamin Richter Matthias Blaicher Michael Thiel Martin Hermatschweiler Nanoscribe Gmbh & Co, Hermann-von-Helmholtz-Platz 6, 76344 Eggenstein-Leopoldshafen, Germany 10.3762/bjnano.14.70 Abstract Microneedles and, subsequently, microneedle arrays are emerging miniaturized
  • microneedles may become personalized according to a patient’s demographic in order to increase drug delivery efficiency and reduce healing times for patient-centric care. Keywords: 3D printing; microfabrication; microneedles; personalized medicine; transdermal drug delivery; two-photon polymerization
  • injuries [7]. An estimated two million hospital-based workers suffer from work-related needle injuries, adding burdensome financial cost and infection risks to healthcare systems [8][9]. With the advent of advanced additive manufacturing techniques, we can miniaturize needles (microneedles) to overcome
PDF
Album
Perspective
Published 15 Aug 2023

Microneedle patches – the future of drug delivery and vaccination?

  • Zahra Faraji Rad,
  • Philip D. Prewett and
  • Graham J. Davies

Beilstein J. Nanotechnol. 2023, 14, 494–495, doi:10.3762/bjnano.14.40

Graphical Abstract
  • blood for diagnostic tests. Other tests, such as blood glucose monitoring in diabetics [1], release blood by a pinprick from the capillaries immediately beneath the skin. Microneedles (MNs), typically less than 1 mm long, are a late 20th century development with significant promise for the above
  • diagnostics. Microneedles provide shallow transdermal access to the ISF and are an excellent match to these and other developments when integrated into arrays on a substrate to form a patch. The possibility of inexpensive mass-manufactured MN patches for drug delivery, vaccination, and diagnostic testing is a
PDF
Editorial
Published 14 Apr 2023

Microneedle-based ocular drug delivery systems – recent advances and challenges

  • Piotr Gadziński,
  • Anna Froelich,
  • Monika Wojtyłko,
  • Antoni Białek,
  • Julia Krysztofiak and
  • Tomasz Osmałek

Beilstein J. Nanotechnol. 2022, 13, 1167–1184, doi:10.3762/bjnano.13.98

Graphical Abstract
  • the manuscript, the most important manufacturing technologies, microneedle classification, and the research studies related to ophthalmic application of microneedles are presented. Finally, the most important advantages and drawbacks, as well as potential challenges related to the unique anatomy and
  • physiology of the eye are summarized and discussed. Keywords: eye; microneedles; ocular drug delivery; ophthalmic drugs; Review 1 Introduction Since its first appearance in biomedicine, microtechnology is rapidly entering the world of pharmaceutical sciences, including pharmaceutical technology [1][2][3][4
  • significant trend and led to introduction of microneedles [92][93][94][95][96][97][98]. Taking into account the rapid progress in production technologies, it is already possible to obtain needles with a length of less than 1 mm, however, it can be expected that nanometer-sized needles will soon appear in use
PDF
Album
Review
Published 24 Oct 2022

Fabrication and testing of polymer microneedles for transdermal drug delivery

  • Vahid Ebrahiminejad,
  • Zahra Faraji Rad,
  • Philip D. Prewett and
  • Graham J. Davies

Beilstein J. Nanotechnol. 2022, 13, 629–640, doi:10.3762/bjnano.13.55

Graphical Abstract
  • setting. Keywords: hot embossing; microneedles; penetration efficiency; thermoplastic polymers; two-photon polymerization; Introduction During the past two decades, MN devices have become a promising tool for transdermal drug delivery, vaccination, and point-of-care diagnostics [1][2]. MNs are a
PDF
Album
Full Research Paper
Published 08 Jul 2022

Ciprofloxacin-loaded dissolving polymeric microneedles as a potential therapeutic for the treatment of S. aureus skin infections

  • Sharif Abdelghany,
  • Walhan Alshaer,
  • Yazan Al Thaher,
  • Maram Al Fawares,
  • Amal G. Al-Bakri,
  • Saja Zuriekat and
  • Randa SH. Mansour

Beilstein J. Nanotechnol. 2022, 13, 517–527, doi:10.3762/bjnano.13.43

Graphical Abstract
  • , 19392, Jordan 10.3762/bjnano.13.43 Abstract Microneedles have been widely studied for many topical and transdermal therapeutics due to their ability to painlessly puncture the skin, thereby bypassing the stratum corneum, the main skin barrier. In this study, ciprofloxacin (CIP) was loaded into
  • dissolving polymeric microneedles prepared by a two-layer centrifugation method as a potential treatment of skin infections such as cellulitis. The polymers used were polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP). Two formulations were investigated, namely CIP_MN1, composed of 10 mg ciprofloxacin
  • of microneedles in skin, it was used to evaluate the ability of microneedles to perforate the skin. CIP_MN1 showed almost complete perforation of Parafilm, 190 pores, compared to CIP_MN2 which created only 85 pores in Parafilm, and therefore CIP_MN1 was used for subsequent studies. Examining CIP_MN1
PDF
Album
Full Research Paper
Published 15 Jun 2022

Design and characterization of polymeric microneedles containing extracts of Brazilian green propolis

  • Camila Felix Vecchi,
  • Rafaela Said dos Santos,
  • Jéssica Bassi da Silva and
  • Marcos Luciano Bruschi

Beilstein J. Nanotechnol. 2022, 13, 503–516, doi:10.3762/bjnano.13.42

Graphical Abstract
  • Abstract Microneedles (MNs) are a means to break the protective skin barrier in a minimally invasive way. By creating temporary micropores, they make biologically active agents available in the skin layers. Propolis (PRP) is a gum resin with a complex chemical composition, produced by bees Apis mellifera L
  • taken orally, the extracts have a strong and unpleasant taste. The aim of this work was to fabricate and characterize microneedles containing polyvinyl alcohol, polyvinylpyrrolidone, poloxamer P407, and an ethanolic or glycolic extract of PRP. Also, the obtained structures were microscopically and
  • : development; mechanical; microneedles; propolis extract; technology; Introduction In recent decades, microneedle devices have been widely used for non-invasive dermal delivery of various drugs [1][2][3]. Microneedles (MNs) are large enough to penetrate and open small holes only in the stratum corneum and the
PDF
Album
Supp Info
Full Research Paper
Published 08 Jun 2022

Ethosomal (−)-epigallocatechin-3-gallate as a novel approach to enhance antioxidant, anti-collagenase and anti-elastase effects

  • Çiğdem Yücel,
  • Gökçe Şeker Karatoprak,
  • Sena Yalçıntaş and
  • Tuğba Eren Böncü

Beilstein J. Nanotechnol. 2022, 13, 491–502, doi:10.3762/bjnano.13.41

Graphical Abstract
  • , iontophoresis, needle-free injection, and microneedles are used [17]. As an alternative option, vesicular delivery systems are also effective systems to enhance the penetration of drugs through the skin. As an example, ethosomes (ETHs) are soft and malleable nanovesicles composed of phospholipids, water, and
PDF
Album
Full Research Paper
Published 31 May 2022

Tubular glassy carbon microneedles with fullerene-like tips for biomedical applications

  • Sharali Malik and
  • George E. Kostakis

Beilstein J. Nanotechnol. 2022, 13, 455–461, doi:10.3762/bjnano.13.38

Graphical Abstract
  • the nanoarchitectonics concept of bottom-up creation of functional materials, we use methane rather than a polymer to form glassy carbon. Here we show that tubular glassy carbon microneedles with fullerene-like tips form when methane undergoes pyrolysis on a curved alumina surface. X-ray diffraction
  • glassy carbons relevant to the application of glassy carbons as a biomaterial, for example, as a new form of carbon-based microneedles. Since metallic needles can introduce toxic/allergenic species into susceptible subjects, this alternative carbon-based microneedle form has great potential as a
  • procedure utilising catalytic methane pyrolysis to fabricate glassy carbon microneedle electrodes for biomedical applications. Results and Discussion Growth of glassy carbon microneedles Previously, glassy carbon microneedles have been made by the pyrolysis of commercially available polymers. The polymer
PDF
Album
Full Research Paper
Published 19 May 2022

An overview of microneedle applications, materials, and fabrication methods

  • Zahra Faraji Rad,
  • Philip D. Prewett and
  • Graham J. Davies

Beilstein J. Nanotechnol. 2021, 12, 1034–1046, doi:10.3762/bjnano.12.77

Graphical Abstract
  • feature sizes are fabricated using the tools of the microelectronics industry from metals, silicon, and polymers. Various types of subtractive and additive manufacturing processes have been used to manufacture microneedles, but the development of microneedle-based systems using conventional subtractive
  • microneedle systems applications, designs, material selection, and manufacturing methods. Keywords: drug delivery; microelectromechanical systems (MEMS); microfabrication; microneedles; point-of-care diagnostics; Introduction The concept of microneedle structures to penetrate painlessly the outermost layer
  • microelectromechanical systems (MEMS) and provided a platform for microfabrication of compact miniaturized medical devices for human health screening, monitoring, and diagnostic purposes. Microneedles are microstructures that are sharp and robust enough for skin penetration, made using MEMS technology. The application
PDF
Album
Review
Published 13 Sep 2021
Other Beilstein-Institut Open Science Activities