Search results

Search for "nanocarriers" in Full Text gives 80 result(s) in Beilstein Journal of Nanotechnology.

Toward clinical translation of carbon nanomaterials in anticancer drug delivery: the need for standardisation

  • Michał Bartkowski,
  • Francesco Calzaferri and
  • Silvia Giordani

Beilstein J. Nanotechnol. 2025, 16, 2092–2104, doi:10.3762/bjnano.16.144

Graphical Abstract
  • nanotubes, and carbon dots, have attracted considerable interest as nanocarriers for drug delivery due to their unique physicochemical properties. Their high surface area, biocompatibility, and modifiable surface chemistry make them highly attractive for a range of biomedical applications. However, concerns
  • enhancing therapeutic delivery, particularly in areas such as cancer treatment. This perspective highlights critical considerations in the development of CNM-based nanocarriers, spanning from initial design to clinical implementation. Keywords: carbon nanomaterials (CNMs); carbon nanoparticles (CNPs); drug
  • delivery systems (DDSs); nanocarriers; quality control (QC); Introduction Nanomaterials Nanomaterials (NMs) have an extensive array of various properties and applications across many industries, including the biomedical, health care, food/agriculture, industrial, environmental, electronic, and renewable
PDF
Album
Supp Info
Perspective
Published 18 Nov 2025

Beyond the shell: exploring polymer–lipid interfaces in core–shell nanofibers to carry hyaluronic acid and β-caryophyllene

  • Aline Tavares da Silva Barreto,
  • Francisco Alexandrino-Júnior,
  • Bráulio Soares Arcanjo,
  • Paulo Henrique de Souza Picciani and
  • Kattya Gyselle de Holanda e Silva

Beilstein J. Nanotechnol. 2025, 16, 2015–2033, doi:10.3762/bjnano.16.139

Graphical Abstract
  • biomaterials, recent decades have seen intensive research into novel therapeutic strategies for regenerative medicine [1][2][3][4]. Within this scenario, a pivotal current strategy in formulation development focuses on integrating nanocarriers with nanoscale three-dimensional biomaterials, enabling major
PDF
Album
Full Research Paper
Published 12 Nov 2025

Targeting the vector of arboviruses Aedes aegypti with nanoemulsions based on essential oils: a review with focus on larvicidal and repellent properties

  • Laryssa Ferreira do Nascimento Silva,
  • Douglas Dourado,
  • Thayse Silva Medeiros,
  • Mariana Alice Gonzaga Gabú,
  • Maria Cecilia Queiroga dos Santos,
  • Daiane Rodrigues dos Santos,
  • Mylena Lemos dos Santos,
  • Gabriel Bezerra Faierstein,
  • Rosângela Maria Rodrigues Barbosa and
  • Fabio Rocha Formiga

Beilstein J. Nanotechnol. 2025, 16, 1894–1913, doi:10.3762/bjnano.16.132

Graphical Abstract
  • , nanotechnological strategies have been used, such as polymeric nanocarriers [30], solid lipid nanoparticles [31], liposomes [32], and nanoemulsions [13][14][33]. Among these strategies, nanoemulsions, kinetically stable nanometric dispersions (20–500 nm) of two immiscible liquids, stabilized by surfactants, have
PDF
Album
Review
Published 28 Oct 2025

Exploring the potential of polymers: advancements in oral nanocarrier technology

  • Rousilândia de Araujo Silva,
  • Igor Eduardo Silva Arruda,
  • Luise Lopes Chaves,
  • Mônica Felts de La Roca Soares and
  • Jose Lamartine Soares Sobrinho

Beilstein J. Nanotechnol. 2025, 16, 1751–1793, doi:10.3762/bjnano.16.122

Graphical Abstract
  • in the application of polymers as oral nanocarriers, emphasizing key natural and synthetic polymers that enhance stability, bioavailability, and release. The physicochemical properties, biodegradability, and chemical modifications of these polymers, which promote mucoadhesion and epithelial
  • developing diverse nanocarriers for oral applications, and this review provides a valuable theoretical foundation for understanding the strategies currently employed in this field. Keywords: drug delivery; nanoparticle; oral administration; polymer; polymeric nanoparticle; Review 1 Introduction The oral
  • polymers are classified based on their chemical composition and include polyesters, polyamides, polyethylene glycol derivatives, and responsive polymers, among others. The most frequently used polymers as oral nanocarriers include poly(lactic-co-glycolic) acid (PLGA), polycaprolactone (PCL), and
PDF
Album
Review
Published 10 Oct 2025

Advances of aptamers in esophageal cancer diagnosis, treatment and drug delivery

  • Yang Fei,
  • Hui Xu,
  • Chunwei Zhang,
  • Jingjing Wang and
  • Yong Jin

Beilstein J. Nanotechnol. 2025, 16, 1734–1750, doi:10.3762/bjnano.16.121

Graphical Abstract
  • lifestyle-related risk factors. However, the discovery of aptamers and the development of nanocarriers bring great benefits to the diagnosis, treatment, and targeted drug delivery of EC. Aptamers or peptide aptamers as biosensors or therapeutic agents for the diagnosis or treatment of EC, aptamer–drug
  • conjugates and aptamer-functionalized drug nanocarriers for targeted drug delivery in esophageal cancer are reviewed in this paper. In addition, we expect investigators to pay special attention to improving aptamer permeability and stability to accelerate aptamer clinical transformation. In conclusion
  • . These sensors feature minimal invasiveness and low detection limits, demonstrating unique advantages in the early detection of cancer biomarker proteins. Moreover, an advanced drug delivery platform [28] was engineered by functionalizing nanocarriers with the AS1411 aptamer, enabling the targeted co
PDF
Album
Review
Published 06 Oct 2025

Prospects of nanotechnology and natural products for cancer and immunotherapy

  • Jan Filipe Andrade Santos,
  • Marcela Bernardes Brasileiro,
  • Pamela Danielle Cavalcante Barreto,
  • Ligiane Aranha Rocha and
  • José Adão Carvalho Nascimento Júnior

Beilstein J. Nanotechnol. 2025, 16, 1644–1667, doi:10.3762/bjnano.16.116

Graphical Abstract
  • immunotherapies. In this context, 17 patents were identified through the free online databases of the European Patent Office (EPO) and the World Intellectual Property Organization (WIPO). The review discusses various types of nanotechnology, including nanoparticles, nanocarriers, and nanocapsules, as well as
  • traditional therapies. Advances in cancer nanotechnology include the development of smart nanocarriers capable of responding to internal stimuli (such as pH, redox potential, and enzymes) and external stimuli (such as magnetic fields, heat, or ultrasound), enabling precise and controlled drug release [16][17
PDF
Album
Review
Published 22 Sep 2025

Venom-loaded cationic-functionalized poly(lactic acid) nanoparticles for serum production against Tityus serrulatus scorpion

  • Philippe de Castro Mesquita,
  • Karla Samara Rocha Soares,
  • Manoela Torres-Rêgo,
  • Emanuell dos Santos-Silva,
  • Mariana Farias Alves-Silva,
  • Alianda Maira Cornélio,
  • Matheus de Freitas Fernandes-Pedrosa and
  • Arnóbio Antônio da Silva-Júnior

Beilstein J. Nanotechnol. 2025, 16, 1633–1643, doi:10.3762/bjnano.16.115

Graphical Abstract
  • controlled by diffusion mechanism was also measured. Finally, in vivo immunization in BALB/c mice showed superior efficacy of the T. serrulatus venom protein-loaded nanoparticles compared to the traditional aluminum hydroxide immunoadjuvant. Thus, the formulations shown are promising nanocarriers to be used
  • vitro, creates a challenge for drug delivery systems aiming to effectively target affected tissues or cells [14][15]. Nanocarriers have been widely studied for enabling prolonged circulation and sustained drug release over time, depending on their structural properties [16][17]. Therefore, protein
  • delivery through nanoparticles is an effective way to control drug release as well as to design an efficient protein delivery system [16]. Among different materials used for nanocarriers, several polymers have been investigated for producing cationic nanocarriers due to their ability to cross biological
PDF
Album
Full Research Paper
Published 17 Sep 2025

Nanomaterials for biomedical applications

  • Iqra Zainab,
  • Zohra Naseem,
  • Syeda Rubab Batool,
  • Filippo Pierini,
  • Seda Kizilel and
  • Muhammad Anwaar Nazeer

Beilstein J. Nanotechnol. 2025, 16, 1499–1503, doi:10.3762/bjnano.16.105

Graphical Abstract
  • , Istanbul, Turkey 10.3762/bjnano.16.105 Keywords: biomedical applications; drug delivery; nanocarriers; nanomaterials; nanomedicine; nanoparticles; polymeric nanoparticles; tissue regeneration; Medicine has rapidly advanced over the last few decades, and nanotechnology has played a significant role in
  • designing nanomaterials that can bring the drug to the required place and then release it in a planned way. One of the earliest nanocarriers examined for drug delivery was liposomes. They are tiny spheres made of lipids, either naturally or synthetically, and their structure is closely similar to the cell
  • nanoparticles to target particular cell types, making them precise [10]. Dendrimers are considered a more promising group among nanocarriers. They are highly branched structures, with a given shape and many functional groups placed on their surface. This enables the safe loading of high quantities of drugs and
PDF
Editorial
Published 28 Aug 2025

Enhancing the therapeutical potential of metalloantibiotics using nano-based delivery systems

  • Alejandro Llamedo,
  • Marina Cano,
  • Raquel G. Soengas and
  • Francisco J. García-Alonso

Beilstein J. Nanotechnol. 2025, 16, 1350–1366, doi:10.3762/bjnano.16.98

Graphical Abstract
  • : antimicrobial resistance; biocompatibility; metalloantibiotics; nanocarriers; targeted delivery; Introduction Antimicrobial resistance (AMR), the condition that bacteria no longer respond to drugs used to treat infections, has become one of the biggest public health challenges of the 21st century. According to
  • resistance. Review Nanocarriers for targeted antibiotic delivery The role of drug delivery systems is particularly vital in combating bacterial infections where antibiotic resistance poses a significant challenge [27][28]. Conventional antibiotic treatments often result in sublethal drug concentrations at
  • approaches take advantage of the specific features of infection sites to enhance the precision of antimicrobial delivery. In summary, the incorporation of antibiotics into various nanocarriers represents a promising strategy to address bacterial resistance. These systems can improve therapeutic efficacy by
PDF
Album
Review
Published 15 Aug 2025

Ferroptosis induction by engineered liposomes for enhanced tumor therapy

  • Alireza Ghasempour,
  • Mohammad Amin Tokallou,
  • Mohammad Reza Naderi Allaf,
  • Mohsen Moradi,
  • Hamideh Dehghan,
  • Mahsa Sedighi,
  • Mohammad-Ali Shahbazi and
  • Fahimeh Lavi Arab

Beilstein J. Nanotechnol. 2025, 16, 1325–1349, doi:10.3762/bjnano.16.97

Graphical Abstract
  • , lipid peroxidation facilitation, and drug release kinetics. In the following section, we explore how these engineered liposomes contribute to ferroptosis induction and tumor therapy. 3.3 Applications and advancements in liposomal drug delivery systems Liposomes are highly promising nanocarriers for drug
PDF
Album
Review
Published 14 Aug 2025

Better together: biomimetic nanomedicines for high performance tumor therapy

  • Imran Shair Mohammad,
  • Gizem Kursunluoglu,
  • Anup Kumar Patel,
  • Hafiz Muhammad Ishaq,
  • Cansu Umran Tunc,
  • Dilek Kanarya,
  • Mubashar Rehman,
  • Omer Aydin and
  • Yin Lifang

Beilstein J. Nanotechnol. 2025, 16, 1246–1276, doi:10.3762/bjnano.16.92

Graphical Abstract
  • /adjuvant delivery and tumor antigen-specific T-cell targeting strategies. It also summarizes the characteristics of biomimetic drug delivery nanocarriers designed from different cell types, their modification with specific ligands for precise and enhanced tumor targeting and TME responsiveness. Finally, by
  • . Cancer cell membrane-coated nanoparticles can enter the cancer cells simply by fusion. The membrane coating is fused with the cancer cell membrane and delivers the payload inside the cytosol [46]. A distinctive characteristic of cell membrane-coated nanocarriers is that they include carbohydrates
  • proteins, mRNAs, microRNAs (miRNAs), and lipids, to recipient cells. Consequently, these naturally equipped nanocarriers have been used for drug delivery [106]. Exosomes are usually isolated from biological samples by centrifugation, size exclusion chromatography, ultrafiltration, immune affinity, and
PDF
Album
Review
Published 05 Aug 2025

Hydrogels and nanogels: effectiveness in dermal applications

  • Jéssica da Cruz Ludwig,
  • Diana Fortkamp Grigoletto,
  • Daniele Fernanda Renzi,
  • Wolf-Rainer Abraham,
  • Daniel de Paula and
  • Najeh Maissar Khalil

Beilstein J. Nanotechnol. 2025, 16, 1216–1233, doi:10.3762/bjnano.16.90

Graphical Abstract
  • nanocarriers, pharmacokinetic and pharmacodynamic parameters – such as size, release kinetics, and biodistribution of the encapsulated drug – must be carefully defined to maximize the efficacy of the system [65]. Such considerations are essential to obtain stable formulations with a controlled release profile
  • as drug carriers to deliver hydrophobic [153] and hydrophilic [154] molecules as well as biomolecules, including proteins [155] and nucleic acids [156]. These nanocarriers can be obtained from biodegradable and biocompatible materials [157], showing singular properties, such as stimuli-responsiveness
  • temperature responsiveness and high efficiency to release diclofenac, showing potential as dermal nanocarriers by mimicking a biological environment [208]. Naproxen, another nonsteroidal anti-inflammatory drug, has been incorporated into poly(N-isopropylacrylamide) nanogels for release into the skin. The
PDF
Album
Review
Published 01 Aug 2025

Serum heat inactivation diminishes ApoE-mediated uptake of D-Lin-MC3-DMA lipid nanoparticles

  • Demian van Straten,
  • Luuk van de Schepop,
  • Rowan Frunt,
  • Pieter Vader and
  • Raymond M. Schiffelers

Beilstein J. Nanotechnol. 2025, 16, 740–748, doi:10.3762/bjnano.16.57

Graphical Abstract
  • media. A similar observation was made by Simon et al. [30], who attributed a difference in cellular uptake of PEGylated polystyrene nanocarriers in untreated or heat-inactivated FCS to the denaturation of important protein corona components. Indeed, heat inactivation did not reduce the amount of protein
PDF
Album
Supp Info
Full Research Paper
Published 30 May 2025

Synthetic-polymer-assisted antisense oligonucleotide delivery: targeted approaches for precision disease treatment

  • Ana Cubillo Alvarez,
  • Dylan Maguire and
  • Ruairí P. Brannigan

Beilstein J. Nanotechnol. 2025, 16, 435–463, doi:10.3762/bjnano.16.34

Graphical Abstract
  • study, Min et al. investigated the use of PLL to develop glucose-coated polymeric nanocarriers for the systemic delivery of ASOs across the blood–brain barrier (BBB) [71]. The authors utilised a polyion complex micelle (PIC/M) platform based on poly(ethylene glycol)-b-poly(ʟ-lysine) (PEG–PLL, DPPLL = 42
  • . These results underscored the potential of these nanocarriers as a non-invasive method for effective ASO delivery to the brain, offering a promising strategy for treating central nervous system disorders. Besides glycosylation, the utilisation of targeting sequenced peptides has also gained attention
  • cytotoxicity and improved intracellular delivery of Bcl-2 siRNAs compared to PLL–siRNA and PEG-b-PLL–siRNA nanocarriers [145]. Nowadays, because of the straightforward synthesis and commercial availability, PAMAM dendrimers are considered the main dendritic system for nucleic acid delivery and gene transfer
PDF
Album
Review
Published 27 Mar 2025

Development of a mucoadhesive drug delivery system and its interaction with gastric cells

  • Ahmet Baki Sahin,
  • Serdar Karakurt and
  • Deniz Sezlev Bilecen

Beilstein J. Nanotechnol. 2025, 16, 371–384, doi:10.3762/bjnano.16.28

Graphical Abstract
  • ]. Sadeghi et al. prepared alginate microparticles with EE values of 73% and 69% with two different model drugs [49]. Alizadeh et al. synthesized alginate-based nanocarriers with 68.4% encapsulation efficiency [50]. The encapsulation efficiency value obtained in this study was found to be promising and
  • . Mucoadhesive drug delivery systems eventually lead to an increased amount of drug at the mucosa. However, these nanocarriers might also be trapped in the mucus layer and get washed away with mucus turnover. The ability to penetrate through the mucus layer and to reach the underlying epithelium are therefore
PDF
Album
Supp Info
Full Research Paper
Published 13 Mar 2025

Radiosensitizing properties of dual-functionalized carbon nanostructures loaded with temozolomide

  • Radmila Milenkovska,
  • Nikola Geskovski,
  • Dushko Shalabalija,
  • Ljubica Mihailova,
  • Petre Makreski,
  • Dushko Lukarski,
  • Igor Stojkovski,
  • Maja Simonoska Crcarevska and
  • Kristina Mladenovska

Beilstein J. Nanotechnol. 2025, 16, 229–251, doi:10.3762/bjnano.16.18

Graphical Abstract
  • aim to prepare nanocarriers with the potential to prolong the drug circulation time, cross the blood–brain–tumor barrier (BBTB), and provide targeted and controlled drug release in the brain tumor cells. Cytotoxicity and effects on cell membrane integrity of the blank and TMZ-loaded dual
  • promotes more intense contact with the cells and rupture of cell membranes. Overall, the findings demonstrate the radiosensitizing properties of not only TMZ but also of CNs and point to a clinical benefit from combined treatment with carbon nanocarriers of TMZ and radiotherapy in GBM. Keywords: carbon
  • values for TMZ loading efficacy and content were achieved, ranging from 42% to 67% and from 11% to 18%, respectively (Table 1), which are in the scope of values reported for nanocarriers of TMZ (27% to 89% and 4% to 11%, respectively) [44][45][46]. The higher values achieved for plain (non-functionalized
PDF
Album
Full Research Paper
Published 19 Feb 2025

Nanocarriers and macrophage interaction: from a potential hurdle to an alternative therapeutic strategy

  • Naths Grazia Sukubo,
  • Paolo Bigini and
  • Annalisa Morelli

Beilstein J. Nanotechnol. 2025, 16, 97–118, doi:10.3762/bjnano.16.10

Graphical Abstract
  • .16.10 Abstract In the coming decades, the development of nanocarriers (NCs) for targeted drug delivery will mark a significant advance in the field of pharmacology. NCs can improve drug solubility, ensure precise distribution, and enable passage across biological barriers. Despite these potential
  • nanomedicine landscape, the design and development of nanocarriers (NCs) for precise drug delivery are a pivotal innovation. NCs address significant pharmacological challenges, such as enhancing drug solubility, ensuring specific distribution, and facilitating the crossing of biological barriers [1]. Tailoring
PDF
Album
Review
Published 31 Jan 2025

A nanocarrier containing carboxylic and histamine groups with dual action: acetylcholine hydrolysis and antidote atropine delivery

  • Elina E. Mansurova,
  • Andrey A. Maslennikov,
  • Anna P. Lyubina,
  • Alexandra D. Voloshina,
  • Irek R. Nizameev,
  • Marsil K. Kadirov,
  • Anzhela A. Mikhailova,
  • Polina V. Mikshina,
  • Albina Y. Ziganshina and
  • Igor S. Antipin

Beilstein J. Nanotechnol. 2025, 16, 11–24, doi:10.3762/bjnano.16.2

Graphical Abstract
  • inhibit cholinesterases, potentially causing increased ACh levels. Developing nanocarriers for Atr delivery could provide a solution. These carriers might improve the efficacy of Atr, prolong its action duration, and reduce its toxicity [11][12]. In recent years, resorcinarenes, which are analogues of
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2025

Mechanistic insights into endosomal escape by sodium oleate-modified liposomes

  • Ebrahim Sadaqa,
  • Satrialdi,
  • Fransiska Kurniawan and
  • Diky Mudhakir

Beilstein J. Nanotechnol. 2024, 15, 1667–1685, doi:10.3762/bjnano.15.131

Graphical Abstract
  • in particle size to 151.9 ± 5.88 nm, approaching the higher end of the optimal range for nanocarriers, while maintaining a PDI similar to Unmodified-Lipo at approximately 0.248 ± 0.040. Notably, the PDI values below 0.5 across all formulations suggested a high degree of homogeneity in our
PDF
Album
Supp Info
Full Research Paper
Published 30 Dec 2024

Biomimetic nanocarriers: integrating natural functions for advanced therapeutic applications

  • Hugo Felix Perini,
  • Beatriz Sodré Matos,
  • Carlo José Freire de Oliveira and
  • Marcos Vinicius da Silva

Beilstein J. Nanotechnol. 2024, 15, 1619–1626, doi:10.3762/bjnano.15.127

Graphical Abstract
  • Biomimetic nanocarriers, engineered to mimic the characteristics of native cells, offer a revolutionary approach in the treatment of various complex human diseases. This strategy enhances drug delivery by leveraging the innate properties of cellular components, thereby improving biocompatibility and
  • targeting specificity. Biomimetic nanocarriers demonstrate significant advancements in drug delivery systems against cancer therapy, Alzheimer's disease, autoimmune diseases, and viral infections such as COVID-19. Here, we address the therapeutic applications of biomimetic nanocarriers and their promising
  • such as: loss of stability, low efficiency in crossing biological barriers, inadequate efficacy in reaching target active molecules, and poor biodistribution [13][14]. Nanocarriers are employed to transport raw materials, which can be vesicles or solid nanoparticles [15]. Despite the significant
PDF
Album
Perspective
Published 16 Dec 2024

Polymer lipid hybrid nanoparticles for phytochemical delivery: challenges, progress, and future prospects

  • Iqra Rahat,
  • Pooja Yadav,
  • Aditi Singhal,
  • Mohammad Fareed,
  • Jaganathan Raja Purushothaman,
  • Mohammed Aslam,
  • Raju Balaji,
  • Sonali Patil-Shinde and
  • Md. Rizwanullah

Beilstein J. Nanotechnol. 2024, 15, 1473–1497, doi:10.3762/bjnano.15.118

Graphical Abstract
  • simplest among PLHNPs; they are simply mixed nanosystems of polymer/copolymer and lipids with the help of surfactants. In this system, the lipids are scattered in a polymeric/copolymeric matrix [48]. Monolithic PLHNP systems are very similar to colloidal polymeric nanocarriers. In these nanocarriers
  • water/or buffer. Because of the positive charge, the lipids in the inner core encapsulate the drug more efficiently compared to PLHNPs with a polymeric core. In addition, because of the outer lipoidal PEG layer, these nanocarriers escape the uptake by macrophages and enhance the stability of the
  • biological fluids [51]. During the development of these nanocarriers, the concentration of cationic lipids for the inner core, density of the PEG chain on the outer layer, and molecular weight of the polymers are adjusted to modulate their physicochemical characteristics [52][53]. Polymer-caged liposomes As
PDF
Album
Review
Published 22 Nov 2024

Nanotechnological approaches for efficient N2B delivery: from small-molecule drugs to biopharmaceuticals

  • Selin Akpinar Adscheid,
  • Akif E. Türeli,
  • Nazende Günday-Türeli and
  • Marc Schneider

Beilstein J. Nanotechnol. 2024, 15, 1400–1414, doi:10.3762/bjnano.15.113

Graphical Abstract
  • drugs can be within the olfactory epithelium or the trigeminal nerve. Figure 3 was redrawn from [59] as well as [60] and created in BioRender. Akpinar, S. (2023) https://BioRender.com/h18x614. This content is not subject to CC BY 4.0. Different potential nanocarriers for N2B delivery: SLNs, polymeric
PDF
Album
Review
Published 12 Nov 2024

AI-assisted models to predict chemotherapy drugs modified with C60 fullerene derivatives

  • Jonathan-Siu-Loong Robles-Hernández,
  • Dora Iliana Medina,
  • Katerin Aguirre-Hurtado,
  • Marlene Bosquez,
  • Roberto Salcedo and
  • Alan Miralrio

Beilstein J. Nanotechnol. 2024, 15, 1170–1188, doi:10.3762/bjnano.15.95

Graphical Abstract
  • relationship (QSAR)/ quantitative structure–property relationship (QSPR) models, this study explores the application of fullerene derivatives as nanocarriers for breast cancer chemotherapy drugs. Isolated drugs and two drug–fullerene complexes (i.e., drug–pristine C60 fullerene and drug–carboxyfullerene C60
  • to compare results obtained by DFTB3 with a conventional density functional theory approach. These findings promise to enhance breast cancer chemotherapy by leveraging fullerene-based drug nanocarriers. Keywords: breast cancer; CXCR7; drug nanocarriers; QSAR; Introduction Breast cancer is the most
  • models to drugs modified with potential nanocarriers. First, a dataset with 28 drugs, extracted from public datasets or modified from the data annotated in the previous case, was built with the corresponding quantitative descriptors to study complexes of the drugs with fullerene C60 or a simple C60–COOH
PDF
Album
Supp Info
Full Research Paper
Published 19 Sep 2024

Recent updates in applications of nanomedicine for the treatment of hepatic fibrosis

  • Damai Ria Setyawati,
  • Fransiska Christydira Sekaringtyas,
  • Riyona Desvy Pratiwi,
  • A’liyatur Rosyidah,
  • Rohimmahtunnissa Azhar,
  • Nunik Gustini,
  • Gita Syahputra,
  • Idah Rosidah,
  • Etik Mardliyati,
  • Tarwadi and
  • Sjaikhurrizal El Muttaqien

Beilstein J. Nanotechnol. 2024, 15, 1105–1116, doi:10.3762/bjnano.15.89

Graphical Abstract
  • fibrosis. We first emphasize the challenges of conventional drugs for penetrating the biological barriers of the liver. After that, we highlight design principles of nanocarriers for achieving improved drug delivery of antifibrosis drugs through passive and active targeting strategies. Keywords: active
  • targeting; hepatic fibrosis; nanocarriers; nanomedicine; passive targeting; Introduction Over the last three decades, we have witnessed tremendous progress in the field of nanomedicine through the preparation of a vast number of nanoscale (bio)materials. Nanomedicine itself is defined as the biomedical
  • treatment. The enhanced permeability and retention (EPR) effect, first described by Maeda and co-workers in 1986, allows for high accumulation of the drug nanocarriers via the leaky vasculature and the deficient lymphatic system around solid tumors, as illustrated in the right panel of Figure 1 [3][4][5
PDF
Album
Review
Published 23 Aug 2024

Unveiling the potential of alginate-based nanomaterials in sensing technology and smart delivery applications

  • Shakhzodjon Uzokboev,
  • Khojimukhammad Akhmadbekov,
  • Ra’no Nuritdinova,
  • Salah M. Tawfik and
  • Yong-Ill Lee

Beilstein J. Nanotechnol. 2024, 15, 1077–1104, doi:10.3762/bjnano.15.88

Graphical Abstract
PDF
Album
Review
Published 22 Aug 2024
Other Beilstein-Institut Open Science Activities