Search results

Search for "nanomaterials" in Full Text gives 496 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Morphology-driven gas sensing by fabricated fractals: A review

  • Vishal Kamathe and
  • Rupali Nagar

Beilstein J. Nanotechnol. 2021, 12, 1187–1208, doi:10.3762/bjnano.12.88

Graphical Abstract
  • Vishal Kamathe Rupali Nagar Nanomaterials for Energy Applications Lab, Applied Science Department, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Lavale, Pune-412115, Maharashtra, India 10.3762/bjnano.12.88 Abstract Fractals are intriguing structures that repeat
PDF
Album
Supp Info
Review
Published 09 Nov 2021

Self-assembly of amino acids toward functional biomaterials

  • Huan Ren,
  • Lifang Wu,
  • Lina Tan,
  • Yanni Bao,
  • Yuchen Ma,
  • Yong Jin and
  • Qianli Zou

Beilstein J. Nanotechnol. 2021, 12, 1140–1150, doi:10.3762/bjnano.12.85

Graphical Abstract
  • candidates for various applications such as drug delivery, imaging, diagnosis, and photochemistry. The morphology and structure of self-assembled nanomaterials can be flexibly adjusted by transforming the type, proportion, and concentration of the building blocks. This newer area of research is therefore
  • these nanostructures. Therefore, as a new strategy, amino acid self-assembly needs further research to explore the biomimetic and biomedical applications of micro- and nanomaterials. Schematic diagram of amino acid regulatory self-assembly (amino acid–drugs, amino acid–photosensitizers, amino acid–metal
PDF
Album
Review
Published 12 Oct 2021

Criteria ruling particle agglomeration

  • Dieter Vollath

Beilstein J. Nanotechnol. 2021, 12, 1093–1100, doi:10.3762/bjnano.12.81

Graphical Abstract
  • Dieter Vollath NanoConsulting, Primelweg 3, 76297 Stutensee, Germany 10.3762/bjnano.12.81 Abstract Most of the technically important properties of nanomaterials, such as superparamagnetism or luminescence, depend on the particle size. During synthesis and handling of nanoparticles, agglomeration
  • ; Introduction Many properties of technical importance of nanomaterials depend on the particle size. Typical examples are superparamagnetism, luminescence, or energetic applications. In many cases, the particles show in an “as produced” state the requested size distributions. However, during handling or storage
PDF
Album
Full Research Paper
Published 29 Sep 2021

Assessment of the optical and electrical properties of light-emitting diodes containing carbon-based nanostructures and plasmonic nanoparticles: a review

  • Keshav Nagpal,
  • Erwan Rauwel,
  • Frédérique Ducroquet and
  • Protima Rauwel

Beilstein J. Nanotechnol. 2021, 12, 1078–1092, doi:10.3762/bjnano.12.80

Graphical Abstract
  • ); plasmonic nanoparticles; quantum dots; Review Introduction Nanomaterials have engendered the miniaturization of devices, bringing about advances in a variety of fields, such as biomedicine, environmental technologies, optoelectronics, and photocatalysis [1][2]. In particular, light-emitting diodes (LED
  • % since the last decade. These disadvantages can be surmounted by the addition of a current-spreading layer composed of carbon-based nanomaterials, such as GR and CNT [36]. Carbon-based nanostructures play a dual role at the anode. Light-emitting diodes are self-heating, current-sensitive, and luminously
  • -roll techniques and chemical vapor deposition, both industrially viable techniques, are capable of producing 30 inch wafers of graphene, thereby demonstrating the viable upscaling of its production [41]. Other carbon-based nanomaterials such as SWNT have also been employed as current-spreading layers
PDF
Album
Review
Published 24 Sep 2021

Revealing the formation mechanism and band gap tuning of Sb2S3 nanoparticles

  • Maximilian Joschko,
  • Franck Yvan Fotue Wafo,
  • Christina Malsi,
  • Danilo Kisić,
  • Ivana Validžić and
  • Christina Graf

Beilstein J. Nanotechnol. 2021, 12, 1021–1033, doi:10.3762/bjnano.12.76

Graphical Abstract
  • -black, crystalline form, known as the mineral stibnite [7][8]. Sb2S3 nanomaterials with a diverse morphology and a broad distribution of band gap values were synthesized by solvothermal [9], hydrothermal [10], and sonochemical [11] approaches, as well as by chemical bath [12] and chemical vapor
  • deposition [13] methods. Up to now, the syntheses of Sb2S3 nanomaterials lack sufficient control of the growth conditions. The result are nanoparticles of which the size, shape, and crystallinity can only be tuned to a limited extent. However, for several applications, such as electronic circuits [14], it is
  • values) and depended on the reaction time and crystallinity of the sample. While the particles after 2 min reaction time had a band gap value of 2.18 eV, this value decreased to 2.01 eV after 12 h. Different band gap values have already been reported for amorphous Sb2S3 nanomaterials. For example
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2021

Progress and innovation of nanostructured sulfur cathodes and metal-free anodes for room-temperature Na–S batteries

  • Marina Tabuyo-Martínez,
  • Bernd Wicklein and
  • Pilar Aranda

Beilstein J. Nanotechnol. 2021, 12, 995–1020, doi:10.3762/bjnano.12.75

Graphical Abstract
  • design a cathode material that improves the conductivity of the system [4][11]. Common approaches are based on the incorporation of conductive carbon nanomaterials [23]. The volume expansion of sulfur during the discharge process is caused by the formation of the discharge product Na2S. This expansion is
  • antimonene, silicene, and phosphorene [73][83][84]. These sheets are usually integrated with graphene and other conducting carbon nanomaterials to afford mechanical support, flexibility, and electrical conductivity, which results in high capacity values (500–2000 mAh·g−1) over at least 100 cycles [73][75][76
  • components that may include a large variety of nanoparticles and nanomaterials, often related to the use of graphene and other nanoscale carbon materials as components of the electrode materials. A few patents are also from Broadbit Batteries OY. In this case, applications related to electrical vehicles were
PDF
Album
Review
Published 09 Sep 2021

The role of deep eutectic solvents and carrageenan in synthesizing biocompatible anisotropic metal nanoparticles

  • Nabojit Das,
  • Akash Kumar and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2021, 12, 924–938, doi:10.3762/bjnano.12.69

Graphical Abstract
  • variations and flexibility of tuning the size and shape of the metal nanoparticles at the nanoscale made them promising candidates for biomedical applications such as therapeutics, diagnostics, and drug delivery. However, safety and risk assessment of the nanomaterials for clinical purposes are yet to be
  • nanomaterials, but there were issues regarding reproducibility and yield. Enzymatic degradation was one of the factors responsible for limiting the efficacy. Hence, it is necessary to develop a safer and nontoxic route towards synthesizing biocompatible nanomaterials while retaining morphology, high yield, and
  • utilizing safe nanomaterials for advanced biomedical and clinical applications. Keywords: anisotropic nanoparticles; carrageenan; cytotoxicity; eutectic solvents; surfactants; Review Introduction Plasmonic metals such as gold and silver, upon achieving nanoscale dimensions, exhibit unusual physicochemical
PDF
Album
Review
Published 18 Aug 2021

Modification of a SERS-active Ag surface to promote adsorption of charged analytes: effect of Cu2+ ions

  • Bahdan V. Ranishenka,
  • Andrei Yu. Panarin,
  • Irina A. Chelnokova,
  • Sergei N. Terekhov,
  • Peter Mojzes and
  • Vadim V. Shmanai

Beilstein J. Nanotechnol. 2021, 12, 902–912, doi:10.3762/bjnano.12.67

Graphical Abstract
  • nanomaterials that were prepared in the absence of halides [22]. It should be noted that the role of halide ions in the SERS activation of Ag-based substrates is not yet fully clarified. A possible explanation could be their effect on the electrostatic interaction between analyte molecules and the surface of
PDF
Album
Supp Info
Full Research Paper
Published 16 Aug 2021

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
  • , Tehran, Iran 10.3762/bjnano.12.64 Abstract The field of theranostics has been rapidly growing in recent years and nanotechnology has played a major role in this growth. Nanomaterials can be constructed to respond to a variety of different stimuli which can be internal (enzyme activity, redox potential
  • , pH changes, temperature changes) or external (light, heat, magnetic fields, ultrasound). Theranostic nanomaterials can respond by producing an imaging signal and/or a therapeutic effect, which frequently involves cell death. Since ultrasound (US) is already well established as a clinical imaging
  • , and sonoporation. These effects can result in the release of encapsulated drugs or genes at the site of interest as well as cell death and considerable image enhancement. The present review discusses US-responsive theranostic nanomaterials under the following categories: MBs, micelles, liposomes
PDF
Album
Review
Published 11 Aug 2021

Silver nanoparticles nucleated in NaOH-treated halloysite: a potential antimicrobial material

  • Yuri B. Matos,
  • Rodrigo S. Romanus,
  • Mattheus Torquato,
  • Edgar H. de Souza,
  • Rodrigo L. Villanova,
  • Marlene Soares and
  • Emilson R. Viana

Beilstein J. Nanotechnol. 2021, 12, 798–807, doi:10.3762/bjnano.12.63

Graphical Abstract
  • of the top ten threats to public health [1]. Antimicrobial nanomaterials are one of the most promising antibiotic-free alternatives for many applications. Among them are metallic nanoparticles, which could be potent inorganic antimicrobial agents through ion release and the capability to rupture the
PDF
Album
Full Research Paper
Published 05 Aug 2021

Silver nanoparticles induce the cardiomyogenic differentiation of bone marrow derived mesenchymal stem cells via telomere length extension

  • Khosro Adibkia,
  • Ali Ehsani,
  • Asma Jodaei,
  • Ezzatollah Fathi,
  • Raheleh Farahzadi and
  • Mohammad Barzegar-Jalali

Beilstein J. Nanotechnol. 2021, 12, 786–797, doi:10.3762/bjnano.12.62

Graphical Abstract
  • expediting stem cell therapy [7], scientists are trying hard to facilitate the differentiation of MSCs into other types of cardiac cells, including endothelial or smooth muscle cells, in vitro. Meanwhile, the use of 3-dimensional (3D) culture and nanomaterials for cell survival and preservation has attracted
  • attention. Novel nanomaterials are being developed to improve disease treatment processes via biopharmaceutical molecules as well as the surface treatment of biomaterials [8][9]. Among nanoparticles (NPs), silver nanoparticles (Ag-NPs) are successfully commercialized due to their well-known antiseptic
  • initiate the differentiation into cell lineages such as cardiomyocytes, osteocytes, or chondrocytes [24]. Nanotechnology can boost stem cell differentiation and eliminate many obstacles thus improving its applicability in regenerative medicine [25]. The usage of nanomaterials in medicine has been
PDF
Album
Full Research Paper
Published 02 Aug 2021

Recent progress in actuation technologies of micro/nanorobots

  • Ke Xu and
  • Bing Liu

Beilstein J. Nanotechnol. 2021, 12, 756–765, doi:10.3762/bjnano.12.59

Graphical Abstract
  • which can effectively conform to the outer contours of any target with autonomous deformation in a liquid environment for grasping and releasing. The robot has multiple actuation modes, for example, through trapping of magnetic microspheres or through encapsulating magnetic nanomaterials in the robot
  • biomedicine and other fields, new fabrication methods of micro/nanorobots should be explored, and more biocompatible nanomaterials should be selected to reduce costs and expand applications. Finally, problems of clinical testing and practical application. There is still a long way to go before the micro
PDF
Album
Review
Published 20 Jul 2021

Recent progress in magnetic applications for micro- and nanorobots

  • Ke Xu,
  • Shuang Xu and
  • Fanan Wei

Beilstein J. Nanotechnol. 2021, 12, 744–755, doi:10.3762/bjnano.12.58

Graphical Abstract
  • on diamagnetic levitation nanomaterials. Without using strong electromagnets or bulky permanent magnets, it can make the microrobot move in three dimensions in a liquid environment through diamagnetic levitation. The main purpose of this method is to eliminate friction between the substrate surface
  • Ferromagnetic, antiferromagnetic, and other nanomaterials are also used in MNRs. Martel et al. [49] have demonstrated that magnetotactic bacteria embedded in ferromagnetic particles can be used as medical MNRs to control MRI-trackable propulsion and can be used in human microvascular environments. David Folio
  • method to complete medical tasks with the optimal trajectory of controllable movement of MNRs in cardiovascular system was proposed. Some multiferroic nanomaterials exhibit ferromagnetism and antiferromagnetism by adjusting electricity and magnetism. A variety of multifunctional devices can be prepared
PDF
Album
Review
Published 19 Jul 2021

High-yield synthesis of silver nanowires for transparent conducting PET films

  • Gul Naz,
  • Hafsa Asghar,
  • Muhammad Ramzan,
  • Muhammad Arshad,
  • Rashid Ahmed,
  • Muhammad Bilal Tahir,
  • Bakhtiar Ul Haq,
  • Nadeem Baig and
  • Junaid Jalil

Beilstein J. Nanotechnol. 2021, 12, 624–632, doi:10.3762/bjnano.12.51

Graphical Abstract
  • to their greater tube–tube resistance and lower inherent carrier concentration [10]. Today, noble metal nanomaterials are extensively employed owing to their superior conduction properties [11]. Among them only silver nanowires (AgNWs) films outperform ITO films in term of transmittance and
PDF
Album
Full Research Paper
Published 01 Jul 2021

The preparation temperature influences the physicochemical nature and activity of nanoceria

  • Robert A. Yokel,
  • Wendel Wohlleben,
  • Johannes Georg Keller,
  • Matthew L. Hancock,
  • Jason M. Unrine,
  • D. Allan Butterfield and
  • Eric A. Grulke

Beilstein J. Nanotechnol. 2021, 12, 525–540, doi:10.3762/bjnano.12.43

Graphical Abstract
  • engineered nanomaterials prepared by many methods that result in products with varying physicochemical properties and applications. Those used industrially are often calcined, an example is NM-212. Other nanoceria have beneficial pharmaceutical properties and are often prepared by solvothermal synthesis
  • nanomaterials (ENMs), which could profoundly influence their biological effects, is not well understood. After uptake into phagolysosomes, which have a pH value of ca. 4.5, there is the potential for dissolution, changing the physicochemical, and potentially the biological, identity of ENMs. Nanoceria are a
  • was selected by the OECD Working Party on Manufactured Nanomaterials as one of 13 representative manufactured nanomaterials for safety testing to create an understanding of the kind of information about intrinsic nanomaterial properties that may be relevant for exposure and effects assessment [3]. A
PDF
Album
Supp Info
Full Research Paper
Published 04 Jun 2021

Boosting of photocatalytic hydrogen evolution via chlorine doping of polymeric carbon nitride

  • Malgorzata Aleksandrzak,
  • Michalina Kijaczko,
  • Wojciech Kukulka,
  • Daria Baranowska,
  • Martyna Baca,
  • Beata Zielinska and
  • Ewa Mijowska

Beilstein J. Nanotechnol. 2021, 12, 473–484, doi:10.3762/bjnano.12.38

Graphical Abstract
  • Malgorzata Aleksandrzak Michalina Kijaczko Wojciech Kukulka Daria Baranowska Martyna Baca Beata Zielinska Ewa Mijowska Nanomaterials Physicochemistry Department, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Piastow Ave. 42, 71-065 Szczecin
  • . Fabricated 2D nanomaterials were used as photocatalysts for hydrogen evolution from water splitting. It was found that the Cl-modification had an effect on the photocatalytic efficiency. Also, main aspects were revealed: (i) a unique location of Cl atoms at the interlayers of PCN and not on its π-conjugated
PDF
Album
Full Research Paper
Published 19 May 2021

Rapid controlled synthesis of gold–platinum nanorods with excellent photothermal properties under 808 nm excitation

  • Jialin Wang,
  • Qianqian Duan,
  • Min Yang,
  • Boye Zhang,
  • Li Guo,
  • Pengcui Li,
  • Wendong Zhang and
  • Shengbo Sang

Beilstein J. Nanotechnol. 2021, 12, 462–472, doi:10.3762/bjnano.12.37

Graphical Abstract
  • of Technology, Taiyuan 030024, Shanxi, China Department of Orthopedics, the Second Hospital of Shanxi Medical University, Taiyuan 030024, Shanxi, China 10.3762/bjnano.12.37 Abstract Noble metal nanomaterials are particularly suitable as photothermal transduction agents (PTAs) with high photothermal
  • wavelength. In addition, the microstructure of metal nanomaterials, especially the aspect ratio (ratio between length and width), determines the position of the LSPR peak. Therefore, regulating the microstructure of nanomaterials is an effective means to control the LSPR wavelength. Au nanomaterials
PDF
Album
Full Research Paper
Published 17 May 2021

Solution combustion synthesis of a nanometer-scale Co3O4 anode material for Li-ion batteries

  • Monika Michalska,
  • Huajun Xu,
  • Qingmin Shan,
  • Shiqiang Zhang,
  • Yohan Dall'Agnese,
  • Yu Gao,
  • Amrita Jain and
  • Marcin Krajewski

Beilstein J. Nanotechnol. 2021, 12, 424–431, doi:10.3762/bjnano.12.34

Graphical Abstract
  • ][37], and other methods [38][39][40][41]. Co3O4 nanomaterials with various shapes were obtained, such as films [6][16], particles [13][14][32][38], spheres [15][20][28][36], fibers [18][19], wires [21][30][40], tubes [22][32], cages [23][33], flakes [24], sheets [25][37][41], and flowers [31
  • , annealing or calcination. The SCS method has been successfully used to produce spinel-structured Co3O4 nanomaterials [48][49][50][51][52]. Taking advantage of these reports, we decided to design a new SCS synthesis path in which we applied for the first time ᴅ-(+)-glucose as the reducing agent instead of
PDF
Album
Supp Info
Full Research Paper
Published 10 May 2021

Colloidal particle aggregation: mechanism of assembly studied via constructal theory modeling

  • Scott C. Bukosky,
  • Sukrith Dev,
  • Monica S. Allen and
  • Jeffery W. Allen

Beilstein J. Nanotechnol. 2021, 12, 413–423, doi:10.3762/bjnano.12.33

Graphical Abstract
  • and could be expanded upon to fit a range of colloidal systems. Keywords: colloids; constructal law; DLVO theory; interparticle interactions; nanomaterials; self-assembly; tunable systems; Introduction Constructal theory has been used to describe a number of naturally evolving processes/phenomena
PDF
Album
Full Research Paper
Published 06 May 2021

Intracranial recording in patients with aphasia using nanomaterial-based flexible electronics: promises and challenges

  • Qingchun Wang and
  • Wai Ting Siok

Beilstein J. Nanotechnol. 2021, 12, 330–342, doi:10.3762/bjnano.12.27

Graphical Abstract
  • potential to advance conventional intracranial electroencephalography (iEEG) by utilising brain-compatible soft nanomaterials. The resultant technique has significantly high spatial and temporal resolution, both of which enhance the localisation of brain functions and the mapping of dynamic language
  • covering almost the whole brain. The application of novel nanomaterials has the potential to overcome the limitations of conventional electrode arrays. IEEG electrode arrays electroplated with nanoparticles could lower impedance and allow for a closer contact with cortical cells, thereby providing more
  • accurate recordings of cortical activity [6]. Preclinical tests using animals (rats or primates) have shown that nanomaterial-based electronics could boost the spatiotemporal accuracy and resolution of brain imaging signals [7]. In general, iEEG electrode arrays made of nanomaterials are thinner, lighter
PDF
Album
Review
Published 08 Apr 2021

Doxorubicin-loaded gold nanorods: a multifunctional chemo-photothermal nanoplatform for cancer management

  • Uzma Azeem Awan,
  • Abida Raza,
  • Shaukat Ali,
  • Rida Fatima Saeed and
  • Nosheen Akhtar

Beilstein J. Nanotechnol. 2021, 12, 295–303, doi:10.3762/bjnano.12.24

Graphical Abstract
  • properties such as significant absorption or scattering in the visible and near-infrared (NIR) regions, tunable aspect ratio, biocompatibility, fluorescence properties, and the ease of biofunctionalization, which makes them ideal in biomedical applications [13]. Gold-based nanomaterials (i.e., nanospheres
  • , nanorods, nanoshells, and nanocages) have great potential in photothermal cancer therapy due to plasmonic properties and the ease of biofunctionalization. Gold nanorods (GNRs) are more preferable than other gold nanomaterials because of their photothermal conversion efficiency. Better nanotherapeutics can
PDF
Album
Full Research Paper
Published 31 Mar 2021

Differences in surface chemistry of iron oxide nanoparticles result in different routes of internalization

  • Barbora Svitkova,
  • Vlasta Zavisova,
  • Veronika Nemethova,
  • Martina Koneracka,
  • Miroslava Kretova,
  • Filip Razga,
  • Monika Ursinyova and
  • Alena Gabelova

Beilstein J. Nanotechnol. 2021, 12, 270–281, doi:10.3762/bjnano.12.22

Graphical Abstract
  • the uptake of nanomaterials [54]. In agreement with our results, Yumoto et al. [55] also determined the predominant uptake of fluorescently labeled albumin via CME in A549 cells. The authors supposed that macropinocytosis but not CavME may also be involved in albumin internalization. Similarly, the
PDF
Album
Supp Info
Full Research Paper
Published 23 Mar 2021

A review on the biological effects of nanomaterials on silkworm (Bombyx mori)

  • Sandra Senyo Fometu,
  • Guohua Wu,
  • Lin Ma and
  • Joan Shine Davids

Beilstein J. Nanotechnol. 2021, 12, 190–202, doi:10.3762/bjnano.12.15

Graphical Abstract
  • , 212018, PR China 10.3762/bjnano.12.15 Abstract The production of high-quality silkworm silk is of importance in sericulture in addition to the production of biomass, silk proteins, and animal feed. The distinctive properties of nanomaterials have the potential to improve the development of various
  • sectors including medicine, cosmetics, and agriculture. The application of nanotechnology in sericulture not only improves the survival rate of the silkworm, promotes the growth and development of silkworm, but also improves the quality of silk fiber. Despite the positive contributions of nanomaterials
  • , there are a few concerns regarding the safety of their application to the environment, in humans, and in experimental models. Some studies have shown that some nanomaterials exhibit toxicity to tissues and organs of the silkworm, while other nanomaterials exhibit therapeutic properties. This review
PDF
Album
Review
Published 12 Feb 2021

A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures

  • Sina Kaabipour and
  • Shohreh Hemmati

Beilstein J. Nanotechnol. 2021, 12, 102–136, doi:10.3762/bjnano.12.9

Graphical Abstract
  • nanostructures; Review 1 Introduction Nanotechnology has been ubiquitously applied in almost every scientific discipline. Nanomaterials have been utilized in innumerable applications due to their unique characteristics. Novel, successful applications of nanomaterials and nanostructures can be seen in drug
  • ][34][35][36], wastewater remediation [37][38], and catalysis [39][40][41][42][43], to name a few. The success of nanotechnology has been established and the promising outcomes cannot be overlooked; however, the main principles behind the production of nanomaterials are yet to be examined more closely
  • its unique ability to provide advice for synthesizing nanomaterials. The biogenic/green metal nanostructures’ future is bright. Green processes are highly advantageous since they utilize naturally occurring processes to synthesize nanoparticles. The idea was first introduced in the 19th century when
PDF
Album
Review
Published 25 Jan 2021

The role of gold atom concentration in the formation of Cu–Au nanoparticles from the gas phase

  • Yuri Ya. Gafner,
  • Svetlana L. Gafner,
  • Darya A. Ryzkova and
  • Andrey V. Nomoev

Beilstein J. Nanotechnol. 2021, 12, 72–81, doi:10.3762/bjnano.12.6

Graphical Abstract
  • specified target composition. Conclusion In recent years, the study of nanomaterials is one of the fastest growing areas of scientific knowledge. In scientific and technological fields, there is a special interest in studying metal binary nanoparticles among a wide range of nanosystems. These particles
PDF
Album
Full Research Paper
Published 19 Jan 2021
Other Beilstein-Institut Open Science Activities