Search results

Search for "para-sexiphenyl" in Full Text gives 2 result(s) in Beilstein Journal of Nanotechnology.

Controlling the electronic and physical coupling on dielectric thin films

  • Philipp Hurdax,
  • Michael Hollerer,
  • Larissa Egger,
  • Georg Koller,
  • Xiaosheng Yang,
  • Anja Haags,
  • Serguei Soubatch,
  • Frank Stefan Tautz,
  • Mathias Richter,
  • Alexander Gottwald,
  • Peter Puschnig,
  • Martin Sterrer and
  • Michael G. Ramsey

Beilstein J. Nanotechnol. 2020, 11, 1492–1503, doi:10.3762/bjnano.11.132

Graphical Abstract
  • of such decoupling layers may effectively change the electron donating properties of the substrate, for example, by lowering its work function and thus enhancing the charging of the molecular adsorbate layer through electron tunneling. Here, an experimental study of the charging of para-sexiphenyl
  • : decoupling; integer charge transfer; organic films; para-sexiphenyl; thin dielectric film; Introduction Since the first scanning tunneling microscope (STM) imaging of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of pentacene (5A) on NaCl/Cu(111) was
  • constant of the thin film, and dcs is the distance between the charge in the molecule and its image charge in the metal (i.e., the charge separation distance). In this report, we demonstrate the robustness of the conclusions drawn from the 5A study by considering para-sexiphenyl (6P, C36H26). In contrast
PDF
Album
Full Research Paper
Published 01 Oct 2020

Imaging ultra thin layers with helium ion microscopy: Utilizing the channeling contrast mechanism

  • Gregor Hlawacek,
  • Vasilisa Veligura,
  • Stefan Lorbek,
  • Tijs F. Mocking,
  • Antony George,
  • Raoul van Gastel,
  • Harold J. W. Zandvliet and
  • Bene Poelsema

Beilstein J. Nanotechnol. 2012, 3, 507–512, doi:10.3762/bjnano.3.58

Graphical Abstract
  • MS and PFS, respectively. para-Sexiphenyl (6P) thin films were grown on Si{001} wafers covered by a native oxide in an UHV system with a base pressure of 1 × 10−10 mbar. Prior to thin-film growth the substrate was flashed to 500 °C. 6P was deposited at room temperature from a Knudsen cell [8][9]. For
PDF
Album
Full Research Paper
Published 12 Jul 2012
Other Beilstein-Institut Open Science Activities