Search results

Search for "parathion" in Full Text gives 3 result(s) in Beilstein Journal of Nanotechnology.

A nonenzymatic reduced graphene oxide-based nanosensor for parathion

  • Sarani Sen,
  • Anurag Roy,
  • Ambarish Sanyal and
  • Parukuttyamma Sujatha Devi

Beilstein J. Nanotechnol. 2022, 13, 730–744, doi:10.3762/bjnano.13.65

Graphical Abstract
  • /bjnano.13.65 Abstract Organophosphate-based pesticides (e.g., parathion (PT)) have toxic effects on human health through their residues. Therefore, cost-effective and rapid detection strategies need to be developed to ensure the consuming food is free of any organophosphate-residue. This work proposed
  • ; graphene oxide; nonenzymatic approach; parathion; pesticides; square-wave voltammetry; Introduction Crop production is constantly increasing to fulfil the demands of the growing population. The protection of crops against insects is a big challenge for our society. Pesticides have indiscriminately been
  • ) alkylation or acetylcholinesterase (AChE) phosphorylation, involved in the initiation of the carcinogenic process and acute cholinergic toxicity, respectively [2]. Parathion (PT) is a highly toxic OP-based insecticide, potentially harmful to human health, and it may even cause death upon ingestion
PDF
Album
Supp Info
Full Research Paper
Published 28 Jul 2022

Cu2O nanoparticles for the degradation of methyl parathion

  • Juan Rizo,
  • David Díaz,
  • Benito Reyes-Trejo and
  • M. Josefina Arellano-Jiménez

Beilstein J. Nanotechnol. 2020, 11, 1546–1555, doi:10.3762/bjnano.11.137

Graphical Abstract
  • University of Texas at Dallas, Texas 75080, United States 10.3762/bjnano.11.137 Abstract Methyl parathion (MP) is one of the most neurotoxic pesticides. An inexpensive and reliable one-step degradation method of MP was achieved through an aqueous suspension of copper(I) oxide nanoparticles (NPs). Three
  • 4-nitrophenol (4-NPh) as the main product. While the P=S bond of MP becomes P=O, confirmed by 31P NMR. Although Cu2O is a widely known photocatalyst, the degradation of methyl parathion was associated to the surface basicity of Cu2O NPs. Indirect evidence for the basicity of Cu2O NPs was achieved
  • . Keywords: copper(I) oxide (Cu2O); Cu2O nanoparticles; degradation; methyl parathion; surface basicity; Introduction Organophosphorus pesticides (OPPs) are one of many kinds of pesticides that have attracted some attention mainly due to their neurotoxic effect [1][2][3]. The primary mechanism of action of
PDF
Album
Full Research Paper
Published 12 Oct 2020

Twofold role of calcined hydrotalcites in the degradation of methyl parathion pesticide

  • Alvaro Sampieri,
  • Geolar Fetter,
  • María Elena Villafuerte-Castrejon,
  • Adriana Tejeda-Cruz and
  • Pedro Bosch

Beilstein J. Nanotechnol. 2011, 2, 99–103, doi:10.3762/bjnano.2.11

Graphical Abstract
  • parathion (MP) is a very toxic organophosphate pesticide used as a non-systematic insecticide and acaricide on many corps. As MP and its by-products are highly toxic, they have to be retained to avoid pollution of rivers and lakes. Highly efficient sorbents are hydrotalcites (HTs) (or anionic clays). We
  • strength, some calcined hydrotalcites can catalyze the transformation of MP to p-nitrophenol (p-NP) and retain its by-products. Such a process has the advantage of being able to be carried out at room temperature and at the pH of the pesticide solution. Keywords: basicity; hydrotalcite; methyl parathion
  • are promising nanolayer materials for the effective cleansing of water contaminated by organic pesticides. UV–vis spectra of MP solution after being in contact with Mg–Al (a), Zn–Al (b) and Ni–Al. (c) hydrotalcite oxides, MP: methyl parathion, p-NP = p-nitrophenol. Conversion of MP to p-NP from waste
PDF
Album
Supp Info
Full Research Paper
Published 09 Feb 2011
Other Beilstein-Institut Open Science Activities