Search results

Search for "parylene" in Full Text gives 11 result(s) in Beilstein Journal of Nanotechnology.

Assessment of the optical and electrical properties of light-emitting diodes containing carbon-based nanostructures and plasmonic nanoparticles: a review

  • Keshav Nagpal,
  • Erwan Rauwel,
  • Frédérique Ducroquet and
  • Protima Rauwel

Beilstein J. Nanotechnol. 2021, 12, 1078–1092, doi:10.3762/bjnano.12.80

Graphical Abstract
  • 44% compared to 90% of ITO. A higher transmittance is nonetheless possible by optimizing the interface between HTL and SWNT via a parylene layer, which tends to increase the transparency of SWNT. Table 2 lists the polymers and their acronyms mentioned in this study. The anode can be supplemented with
PDF
Album
Review
Published 24 Sep 2021

Advanced hybrid nanomaterials

  • Andreas Taubert,
  • Fabrice Leroux,
  • Pierre Rabu and
  • Verónica de Zea Bermudez

Beilstein J. Nanotechnol. 2019, 10, 2563–2567, doi:10.3762/bjnano.10.247

Graphical Abstract
  • fire retardancy and gas permeation in a low molecular weight epoxy resin [28]. Regarding specific applications, the dielectric properties were investigated by broadband dielectric spectroscopy (BDS) in “Nanocomposite–parylene C thin films with high dielectric constant and low losses for future organic
  • electronic devices” [29]. A combination of deposition techniques was used, chemical vapor deposition for parylene and RF-magnetron sputtering for silver nanoparticles. The content and size of the latter influences the dielectric characteristics of the resulting hybrid films. Such devices may find application
PDF
Editorial
Published 20 Dec 2019

Nanocomposite–parylene C thin films with high dielectric constant and low losses for future organic electronic devices

  • Marwa Mokni,
  • Gianluigi Maggioni,
  • Abdelkader Kahouli,
  • Sara M. Carturan,
  • Walter Raniero and
  • Alain Sylvestre

Beilstein J. Nanotechnol. 2019, 10, 428–441, doi:10.3762/bjnano.10.42

Graphical Abstract
  • Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Viale dell’Università 2, 35020 Legnaro (PD), Italy 10.3762/bjnano.10.42 Abstract Nanocomposite–parylene C (NCPC) thin films were deposited with a new technique based on the combination of chemical vapor deposition (CVD) for parylene C
  • deposition and RF-magnetron sputtering for silver deposition. This method yields good dispersion of Ag-containing nanoparticles inside the parylene C polymer matrix. Film composition and structure were studied by using several techniques. It was found that the plasma generated by the RF-magnetron reactor
  • modifies the film density as well as the degree of crystallinity and the size of parylene C crystallites. Moreover, silver is incorporated in the parylene matrix as an oxide phase. The average size of the Ag oxide nanoparticles is lower than 20 nm and influences the roughness of the NCPC films. Samples
PDF
Album
Full Research Paper
Published 12 Feb 2019

Bidirectional biomimetic flow sensing with antiparallel and curved artificial hair sensors

  • Claudio Abels,
  • Antonio Qualtieri,
  • Toni Lober,
  • Alessandro Mariotti,
  • Lily D. Chambers,
  • Massimo De Vittorio,
  • William M. Megill and
  • Francesco Rizzi

Beilstein J. Nanotechnol. 2019, 10, 32–46, doi:10.3762/bjnano.10.4

Graphical Abstract
  • sensors (1500 μm cantilever beam length) in water at flow velocities up to 0.5 m s−1. It was shown that the sensitivity of the flow sensor to a specific dynamic range can be tuned by choosing the thickness of a thin, waterproof parylene layer accordingly [46]. A parylene coating of 0.5 μm thickness showed
  • strain-hardening behaviour with a linear sensitivity of ≈0.2 V/(m s−1) at water flow velocities lower than 0.2 m s−1. In comparison, a flow sensor coated with 2 μm parylene showed strain-softening behaviour with a linear sensitivity of ≈0.07 V/(m s−1) at higher flow velocities between 0.25 m s−1 and 0.35
  • cantilevers reach approximately 1 mm tip height above the squared sensor substrate. With a substrate height of ≈400 μm, the total height of the flow sensor adds up to 1.4 mm. Each cantilever is 1.5 mm long, 100 μm wide and, depending on the thickness of the parylene layer, 2 to 4 μm thick. Four contact pads
PDF
Album
Full Research Paper
Published 03 Jan 2019

Electrostatically actuated encased cantilevers

  • Benoit X. E. Desbiolles,
  • Gabriela Furlan,
  • Adam M. Schwartzberg,
  • Paul D. Ashby and
  • Dominik Ziegler

Beilstein J. Nanotechnol. 2018, 9, 1381–1389, doi:10.3762/bjnano.9.130

Graphical Abstract
  • . Beginning with gold-coated silicon cantilevers (NSC 19, Mikromasch) (1), we use chemical vapor deposition to coat a 11 μm thick sacrificial polymer layer followed by a 2 μm thick parylene layer. The first layer serves as sacrificial film that defines the air gap and the parylene builds the encasement. Next
  • a slow change of the amplitude with a time constant of several minutes before settling to a new steady state. This phenomenon can be explained by charging or polarizing of the parylene film altering the strength of the electrostatic excitation. Fabricating a gold layer on the inside of the
  • width (weff) as indicated in Figure 6c. The capacitor C is modeled as parallel plates built by the air gap (Cair = ε0Aeff/g) in series with the parylene encasement (Cpary = ε0εparyAeff/p). The resulting capacitance gradient C′ is Static cantilever response The capacitance gradient (C′) (see Equation 8
PDF
Album
Full Research Paper
Published 08 May 2018

Bi-layer sandwich film for antibacterial catheters

  • Gerhard Franz,
  • Florian Schamberger,
  • Hamideh Heidari Zare,
  • Sara Felicitas Bröskamp and
  • Dieter Jocham

Beilstein J. Nanotechnol. 2017, 8, 1982–2001, doi:10.3762/bjnano.8.199

Graphical Abstract
  • Gerhard Franz Florian Schamberger Hamideh Heidari Zare Sara Felicitas Broskamp Dieter Jocham Munich University of Applied Sciences, Munich, D-80335, Bavaria, Germany Plasma Parylene Systems, Pang, D-83026, Bavaria, Germany University Hospital of Schleswig Holstein at Lübeck, Lübeck, D-23538
  • deposition; parylene; sandwich films; Introduction In 2014, nosocomial infections caused the death of more than 2000 patients in Swiss hospitals. About one quarter of the deaths were due to infections of the urethral tract. Applying this number to Germany with 10 times the size in population, these
  • parylene N (N denotes an unsubstituted benzene ring, in contrast to, e.g., PPX-C, which denotes a benzene ring with one Cl atom). PPX, a material with teflon-like properties, has been certified as harmless by the FDA. Poly(p-xylylene) PPX is deposited by low-pressure chemical vapor deposition (CVD) in a
PDF
Album
Full Research Paper
Published 22 Sep 2017

Parylene C as a versatile dielectric material for organic field-effect transistors

  • Tomasz Marszalek,
  • Maciej Gazicki-Lipman and
  • Jacek Ulanski

Beilstein J. Nanotechnol. 2017, 8, 1532–1545, doi:10.3762/bjnano.8.155

Graphical Abstract
  • electronic devices and circuits, which not only comprise active layers, but also electrodes, dielectrics, insulators, substrates and protecting/encapsulating coatings. In this review, poly(chloro-para-xylylene) known as Parylene C, which appears to become a versatile supporting material especially suitable
  • for applications in flexible organic electronics, is presented. A synthesis and basic properties of Parylene C are described, followed by several examples of use of parylenes as substrates, dielectrics, insulators, or protecting materials in the construction of organic field-effect transistors
  • . Keywords: dielectric; encapsulation layer; flexible substrate; organic field effect transistor; Parylene C; Review Introduction An improvement of the performance of organic transistors by means of boosting charge-carrier mobility is one of the main quests in organic electronics, calling for novel design
PDF
Album
Review
Published 28 Jul 2017

Micro- and nano-surface structures based on vapor-deposited polymers

  • Hsien-Yeh Chen

Beilstein J. Nanotechnol. 2017, 8, 1366–1374, doi:10.3762/bjnano.8.138

Graphical Abstract
  • of two types of poly-p-xylylenes, which are commercially named parylene™ N and parylene™ C, respectively) were found to deactivate on several high-energy surfaces of several transition metals such as iron, copper, silver, platinum, and the salts of these metals. The monomer deactivation inhibits the
  • deposition of parylene™ N and parylene™ C on these high-energy metal surfaces. The degree of selectivity (there exists an upper limit, where deposition will commence and the relative selectivity is lost) is different for different metal surfaces and correlates with the deposition rate [77]. Based on the
  • discovery, applications have been demonstrated to generate Nomarski poly(p-phenylene vinylene) (PPV) patterns from selectively deposited parylene™ N on surfaces with photolithographically fabricated iron structures (inhibitors) [78]. A required pore-sealing process for porous dielectrics was also performed
PDF
Album
Review
Published 04 Jul 2017

Vapor deposition routes to conformal polymer thin films

  • Priya Moni,
  • Ahmed Al-Obeidi and
  • Karen K. Gleason

Beilstein J. Nanotechnol. 2017, 8, 723–735, doi:10.3762/bjnano.8.76

Graphical Abstract
  • , USA 10.3762/bjnano.8.76 Abstract Vapor phase syntheses, including parylene chemical vapor deposition (CVD) and initiated CVD, enable the deposition of conformal polymer thin films to benefit a diverse array of applications. This short review for nanotechnologists, including those new to vapor
  • -studied, conformal polymer CVD techniques: parylene CVD and initiated CVD (iCVD), with both deriving from free radical polymerization mechanisms. The four parts of this review will address reaction mechanisms of the aforementioned techniques, necessary deposition conditions for conformal film growth
  • , imaging conformal polymer films, and finally applications for conformal polymer films. Reaction mechanisms Parylene CVD Parlyene CVD is a well-established, free radical polymerization technique that results in poly[p-xylene] films [13]. The reaction mechanism proceeds as shown in Figure 2a, where [2,2
PDF
Album
Review
Published 28 Mar 2017

Carbon-based smart nanomaterials in biomedicine and neuroengineering

  • Antonina M. Monaco and
  • Michele Giugliano

Beilstein J. Nanotechnol. 2014, 5, 1849–1863, doi:10.3762/bjnano.5.196

Graphical Abstract
  • field, however, are extremely promising and confirm the start of an important new discipline at the interface between nanotechnologies and neuroscience. Flexible MEA developed by Lin and colleagues. SEM micrographs showing vertically aligned CNTs on Parylene-C (a,b) and a photo of the transparent
PDF
Album
Correction
Review
Published 23 Oct 2014

Forming nanoparticles of water-soluble ionic molecules and embedding them into polymer and glass substrates

  • Stella Kiel,
  • Olga Grinberg,
  • Nina Perkas,
  • Jerome Charmet,
  • Herbert Kepner and
  • Aharon Gedanken

Beilstein J. Nanotechnol. 2012, 3, 267–276, doi:10.3762/bjnano.3.30

Graphical Abstract
  • were created by the application of ultrasonic waves to the aqueous solutions of these salts. When the sonication was carried out in the presence of a glass microscope slide, a parylene-coated glass slide, or a silicon wafer the ionic NPs were embedded in these substrates by a one-step, ultrasound
  • mechanism of the ultrasound-assisted coating is proposed. Keywords: deposition; ionic salt nanoparticles; parylene; sonochemistry; Introduction The incorporation of nanocrystals into dielectric matrices, such as glass or polymers, has become a topic of broad interest in recent years. The research in the
  • method was applied to NaCl, CuSO4, and KI. The general method suggested for the preparation of water-soluble ionic NPs is sonochemistry. The salt nanocrystals of NaCl, CuSO4 and KI were immobilized from the aqueous solution of the dissolved ionic compounds onto the microscope glass slides, parylene
PDF
Album
Full Research Paper
Published 21 Mar 2012
Other Beilstein-Institut Open Science Activities