Search results

Search for "permeability" in Full Text gives 141 result(s) in Beilstein Journal of Nanotechnology.

Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action

  • Matías Guerrero Correa,
  • Fernanda B. Martínez,
  • Cristian Patiño Vidal,
  • Camilo Streitt,
  • Juan Escrig and
  • Carol Lopez de Dicastillo

Beilstein J. Nanotechnol. 2020, 11, 1450–1469, doi:10.3762/bjnano.11.129

Graphical Abstract
  • their excellent properties, CuO NPs have attracted great interest from the healthcare, food packaging, medical, and environmental industries [120][134]. This metal oxide is capable of disrupting the normal function of the cell membrane, changing its permeability and the cellular respiration process [135
  • , slightly attract NPs [158]. In addition, the double membrane acts as a selective physical barrier against hydrophobic compounds, such as detergents and antibiotics. On the other hand, Gram-positive bacteria have a higher permeability, even with a thick layer of peptidoglycan, since the single membrane is
  • ]. Silver, gold, zinc oxide, and titanium dioxide NPs can be attracted to the cell wall by electrostatic attraction [161], van der Waals forces [162], and hydrophobic interactions [163], inducing changes in the shape, function and permeability of the cells. Proteins and DNA Proteins play a fundamental role
PDF
Album
Review
Published 25 Sep 2020

Transient coating of γ-Fe2O3 nanoparticles with glutamate for its delivery to and removal from brain nerve terminals

  • Konstantin Paliienko,
  • Artem Pastukhov,
  • Michal Babič,
  • Daniel Horák,
  • Olga Vasylchenko and
  • Tatiana Borisova

Beilstein J. Nanotechnol. 2020, 11, 1381–1393, doi:10.3762/bjnano.11.122

Graphical Abstract
  • biocorona can consist of hundreds of proteins, which influence the physical and chemical properties of the nanoparticles, such as, size, morphology, aggregation state, hydrophobicity, and permeability. Hence, it is difficult to predict the behavior of nanoparticles in biological systems [13][18][33]. Ho et
  • considered in support of a mechanism of glutamate-induced activation of NMDA receptors in endothelial cells, which leads to calcium signaling and downstream NO production to promote blood–brain barrier permeability [38]. Thus, it may be expected that glutamate-conjugated γ-Fe2O3 nanoparticles can more easily
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2020

Influence of the magnetic nanoparticle coating on the magnetic relaxation time

  • Mihaela Osaci and
  • Matteo Cacciola

Beilstein J. Nanotechnol. 2020, 11, 1207–1216, doi:10.3762/bjnano.11.105

Graphical Abstract
  • vacuum magnetic permeability. The random Brownian force and torque are usually modelled using the Gaussian noise [21][22]. Besides the random Brownian torque, the conservative torque acting on the nanoparticle is the magnetic torque: where is the local magnetic field on each nanoparticle, given by
PDF
Album
Full Research Paper
Published 12 Aug 2020

Key for crossing the BBB with nanoparticles: the rational design

  • Sonia M. Lombardo,
  • Marc Schneider,
  • Akif E. Türeli and
  • Nazende Günday Türeli

Beilstein J. Nanotechnol. 2020, 11, 866–883, doi:10.3762/bjnano.11.72

Graphical Abstract
  • increase the permeability of the BBB by reversible disruption, either by the use of osmotic agents such as hyperosmolar mannitol injection [18] or physical methods such as ultrasound [19][20]. However, as the BBB is one of the main protection mechanism of the brain against neurotoxins, disrupting it might
  • model and showed that CBSA-nanoparticles had an apparent permeability (Pe) seven times higher than that of BSA-nanoparticles. Furthermore, a leaching study of coumarin-6 was performed at pH 4.0 and 7.4 and showed that less than 1% of the dye was released from the nanoparticles after 80 h. Thus, coumarin
PDF
Album
Review
Published 04 Jun 2020

Multilayer capsules made of weak polyelectrolytes: a review on the preparation, functionalization and applications in drug delivery

  • Varsha Sharma and
  • Anandhakumar Sundaramurthy

Beilstein J. Nanotechnol. 2020, 11, 508–532, doi:10.3762/bjnano.11.41

Graphical Abstract
  • manipulate the shell permeability [4]. However, most of the work uses strong PEs such as polystyrene sulfonate (PSS) as one of the polymers, and thus, in order to release the payload, a disturbance in the intermolecular forces (e.g., covalent binding, hydrogen bonding and electrostatic interactions) guarding
  • the capsule stability is necessarily required. This led to the observation of various environmental triggers such as pH, ionic strength, polarity and temperature that play a major role in manipulating the capsule permeability by modulating the shell interactive forces [5]. Following this, successful
  • ., covalent and noncovalent) between the PEs used for capsule fabrication and their nature. The multilayers showcase selective permeability by being permeable to low molecular weight compounds while impermeable to larger macromolecules [9]. The size of multilayered hollow capsules can be easily controlled by
PDF
Album
Review
Published 27 Mar 2020

Poly(1-vinylimidazole) polyplexes as novel therapeutic gene carriers for lung cancer therapy

  • Gayathri Kandasamy,
  • Elena N. Danilovtseva,
  • Vadim V. Annenkov and
  • Uma Maheswari Krishnan

Beilstein J. Nanotechnol. 2020, 11, 354–369, doi:10.3762/bjnano.11.26

Graphical Abstract
  • delivery applications. The imidazole moieties in PVI can neutralize the acidic pH value, which in turn can aid their endosomal escape through the proton sponge mechanism, through altering the membrane permeability or through by-passing the endosomes [26]. However, the confocal images also reveal that a
PDF
Album
Full Research Paper
Published 17 Feb 2020

An advanced structural characterization of templated meso-macroporous carbon monoliths by small- and wide-angle scattering techniques

  • Felix M. Badaczewski,
  • Marc O. Loeh,
  • Torben Pfaff,
  • Dirk Wallacher,
  • Daniel Clemens and
  • Bernd M. Smarsly

Beilstein J. Nanotechnol. 2020, 11, 310–322, doi:10.3762/bjnano.11.23

Graphical Abstract
  • surface area and a high permeability. Due to big macropores the material can achieve high flow rates for separation processes, and the mesopores within the walls of the macropores lead to a high surface area, which is beneficial for adsorption processes [39][40]. Carbon replicas based on silica monoliths
PDF
Album
Supp Info
Correction
Full Research Paper
Published 10 Feb 2020

Rational design of block copolymer self-assemblies in photodynamic therapy

  • Maxime Demazeau,
  • Laure Gibot,
  • Anne-Françoise Mingotaud,
  • Patricia Vicendo,
  • Clément Roux and
  • Barbara Lonetti

Beilstein J. Nanotechnol. 2020, 11, 180–212, doi:10.3762/bjnano.11.15

Graphical Abstract
  • site [1], researchers have been elaborating different strategies to achieve this goal. The discovery made by Matsumura and Maeda in the late 1990’s that some macromolecular therapeutics spontaneously accumulate in inflamed or cancerous tissues, the so-called enhanced permeability and retention (EPR
  • proposed to overcome the drug resistance of cancer cells. Indeed, it induced membrane permeability of the endo-lysosome and particle disassembly after white-light irradiation thus triggering the release of doxorubicin in the cytosol [96]. In the study by Zheng et al. [100] the AIE fluorophore is used as
PDF
Album
Review
Published 15 Jan 2020

Internalization mechanisms of cell-penetrating peptides

  • Ivana Ruseska and
  • Andreas Zimmer

Beilstein J. Nanotechnol. 2020, 11, 101–123, doi:10.3762/bjnano.11.10

Graphical Abstract
  • . This new conformational state eases the formation of transient pore-like structures in the membrane, which leads to the translocation of the MPG/cargo complexes [33]. MPG also shows an inherent ability to induce membrane permeability, whether associated with cargo or not. This process might be due to
  • fluidity and permeability [32]. Carpet model The ‘carpet’ model describing the direct penetration of some peptides was proposed in 1992 by Pouny and co-workers [34]. According to this model, the positively charged segments of the peptide lie parallel to the membrane surface and are bound to the acidic
PDF
Album
Review
Published 09 Jan 2020

Design of a nanostructured mucoadhesive system containing curcumin for buccal application: from physicochemical to biological aspects

  • Sabrina Barbosa de Souza Ferreira,
  • Gustavo Braga,
  • Évelin Lemos Oliveira,
  • Jéssica Bassi da Silva,
  • Hélen Cássia Rosseto,
  • Lidiane Vizioli de Castro Hoshino,
  • Mauro Luciano Baesso,
  • Wilker Caetano,
  • Craig Murdoch,
  • Helen Elizabeth Colley and
  • Marcos Luciano Bruschi

Beilstein J. Nanotechnol. 2019, 10, 2304–2328, doi:10.3762/bjnano.10.222

Graphical Abstract
  • biocompatibility, improved mechanical characteristics tailored for the specific application, in addition to new release mechanisms and improved permeability [9][12][13][14]. The delivery through the mucosa via buccal administration has shown several advantages as a drug delivery target site. The ease of
  • buccal cavity presents significant differences in permeability due to the composition and thickening of the mucosa [81][82]. Different animal species display varying thickness and keratinization patterns with porcine oral mucosa the most commonly employed for ex vivo testing due to the physiological
PDF
Album
Supp Info
Full Research Paper
Published 25 Nov 2019

Microfluidics as tool to prepare size-tunable PLGA nanoparticles with high curcumin encapsulation for efficient mucus penetration

  • Nashrawan Lababidi,
  • Valentin Sigal,
  • Aljoscha Koenneke,
  • Konrad Schwarzkopf,
  • Andreas Manz and
  • Marc Schneider

Beilstein J. Nanotechnol. 2019, 10, 2280–2293, doi:10.3762/bjnano.10.220

Graphical Abstract
  • mucus. Drug carrier systems such as nanoparticles (NPs) require proper surface chemistry and small size to ensure their permeability through the hydrogel-like systems. We have employed a microfluidic system to fabricate poly(lactic-co-glycolic acid) (PLGA) nanoparticles coated with a muco-penetrating
  • was loaded (EE% of ≈68%) very efficiently into the nanoparticles. Finally, the permeability of muco-penetrating PLGA NPs through pulmonary human mucus was assessed; small NPs with a diameter of less than 100 nm showed fast permeation, underlining the potential of microfluidics for such pharmaceutical
  • applications. Keywords: curcumin; human pulmonary mucus; microfluidics; muco-penetrating nanoparticles; nanomedicine; permeability; PLGA nanoparticles; Introduction In the last decades, the application of nanotechnology in medicine has gained significant attention, especially in the biomedical field for
PDF
Album
Full Research Paper
Published 19 Nov 2019

Incorporation of doxorubicin in different polymer nanoparticles and their anticancer activity

  • Sebastian Pieper,
  • Hannah Onafuye,
  • Dennis Mulac,
  • Jindrich Cinatl Jr.,
  • Mark N. Wass,
  • Martin Michaelis and
  • Klaus Langer

Beilstein J. Nanotechnol. 2019, 10, 2062–2072, doi:10.3762/bjnano.10.201

Graphical Abstract
  • targeting can be achieved via the enhanced permeability and retention (EPR) effect, which is the consequence of increased leakiness of the tumour vasculature and a lack of lymph drainage [4]. Nano-sized drug carrier systems can also prolong the circulation time of anticancer drugs, protect them from
PDF
Album
Full Research Paper
Published 29 Oct 2019

Synthesis and potent cytotoxic activity of a novel diosgenin derivative and its phytosomes against lung cancer cells

  • Liang Xu,
  • Dekang Xu,
  • Ziying Li,
  • Yu Gao and
  • Haijun Chen

Beilstein J. Nanotechnol. 2019, 10, 1933–1942, doi:10.3762/bjnano.10.189

Graphical Abstract
  • targeted drug delivery to tumors. These nanoparticles can passively accumulate in tumors via enhanced permeability and retention (EPR) effect, thus decreasing the toxicity of nonselective bio-distribution [27]. Considering the advantages of liposomes as a drug delivery system for chemotherapeutic drugs and
PDF
Album
Supp Info
Full Research Paper
Published 24 Sep 2019

Engineered superparamagnetic iron oxide nanoparticles (SPIONs) for dual-modality imaging of intracranial glioblastoma via EGFRvIII targeting

  • Xianping Liu,
  • Chengjuan Du,
  • Haichun Li,
  • Ting Jiang,
  • Zimiao Luo,
  • Zhiqing Pang,
  • Daoying Geng and
  • Jun Zhang

Beilstein J. Nanotechnol. 2019, 10, 1860–1872, doi:10.3762/bjnano.10.181

Graphical Abstract
  • accumulate in tumor tissue under the influence of enhanced permeability and retention (EPR) as previously discussed in the literature [43][44]. The zeta potential of the NPs and PNPs was found to be around −35.6 mV and −26.2 mV, respectively. The less negative value of the PNP zeta potential as compared to
PDF
Album
Full Research Paper
Published 11 Sep 2019

Processing nanoporous organic polymers in liquid amines

  • Jeehye Byun,
  • Damien Thirion and
  • Cafer T. Yavuz

Beilstein J. Nanotechnol. 2019, 10, 1844–1850, doi:10.3762/bjnano.10.179

Graphical Abstract
  • advantage for favorable interaction toward target sorbate molecules. A control in thickness and composition of the film should also be achieved when varying the type and the concentration of nanoporous polymers, which will affect the permeability and selectivity of polymer films for adsorption applications
PDF
Album
Supp Info
Full Research Paper
Published 09 Sep 2019

Microfluidic manufacturing of different niosomes nanoparticles for curcumin encapsulation: Physical characteristics, encapsulation efficacy, and drug release

  • Mohammad A. Obeid,
  • Ibrahim Khadra,
  • Abdullah Albaloushi,
  • Margaret Mullin,
  • Hanin Alyamani and
  • Valerie A. Ferro

Beilstein J. Nanotechnol. 2019, 10, 1826–1832, doi:10.3762/bjnano.10.177

Graphical Abstract
  • have been proposed as carriers for curcumin to enhance its distribution and permeability [4]. Different types of nanoparticles have been investigated for curcumin delivery in order to prolong the plasma circulation time and enhance the localization of the drug in the target tissues while reducing the
PDF
Album
Full Research Paper
Published 05 Sep 2019

TiO2/GO-coated functional separator to suppress polysulfide migration in lithium–sulfur batteries

  • Ning Liu,
  • Lu Wang,
  • Taizhe Tan,
  • Yan Zhao and
  • Yongguang Zhang

Beilstein J. Nanotechnol. 2019, 10, 1726–1736, doi:10.3762/bjnano.10.168

Graphical Abstract
  • EIS spectra of the TiO2/GO-coated separator batteries indicates that the presence of the TiO2/GO interlayer hindered the movement of polysulfides and thereby enhanced the utilization of the active material by reducing the shuttle effect. The permeability of polysulfides through both membranes was
PDF
Album
Full Research Paper
Published 19 Aug 2019

Novel hollow titanium dioxide nanospheres with antimicrobial activity against resistant bacteria

  • Carol López de Dicastillo,
  • Cristian Patiño,
  • María José Galotto,
  • Yesseny Vásquez-Martínez,
  • Claudia Torrent,
  • Daniela Alburquenque,
  • Alejandro Pereira and
  • Juan Escrig

Beilstein J. Nanotechnol. 2019, 10, 1716–1725, doi:10.3762/bjnano.10.167

Graphical Abstract
  • , such as reduced cell permeability, target overproduction and protection [47]. As Table 1 shows, the concentration of the strongest antibiotics commonly used against these bacteria were in the range of 25–150 µg mL−1. In general, CSTiO2 exhibited higher antibacterial capacity against Gram-negative
PDF
Album
Supp Info
Full Research Paper
Published 19 Aug 2019

Magnetic segregation effect in liquid crystals doped with carbon nanotubes

  • Danil A. Petrov,
  • Pavel K. Skokov,
  • Alexander N. Zakhlevnykh and
  • Dmitriy V. Makarov

Beilstein J. Nanotechnol. 2019, 10, 1464–1474, doi:10.3762/bjnano.10.145

Graphical Abstract
  • CNTs, μ0 is the magnetic permeability of the vacuum, Wp is the surface anchoring energy density of the NLC matrix and CNTs, v and d are the volume and transverse diameter of the CNTs, f(r) is the local volume fraction of CNTs in the suspension, kB is the Boltzmann constant, T is the temperature. The
PDF
Album
Full Research Paper
Published 22 Jul 2019

Scavenging of reactive oxygen species by phenolic compound-modified maghemite nanoparticles

  • Małgorzata Świętek,
  • Yi-Chin Lu,
  • Rafał Konefał,
  • Liliana P. Ferreira,
  • M. Margarida Cruz,
  • Yunn-Hwa Ma and
  • Daniel Horák

Beilstein J. Nanotechnol. 2019, 10, 1073–1088, doi:10.3762/bjnano.10.108

Graphical Abstract
  • aqueous γ-Fe2O3 colloid (4.4 mg/mL) at 260 K. The inset shows the magnetization curves of all colloids normalized by the nanoparticle weight. (d) Temperature dependence of the magnetization of the γ-Fe2O3@Hep-CS-G colloid. H is the applied magnetic field, and μ0 is the magnetic permeability of vacuum
PDF
Album
Full Research Paper
Published 20 May 2019

Influence of dielectric layer thickness and roughness on topographic effects in magnetic force microscopy

  • Alexander Krivcov,
  • Jasmin Ehrler,
  • Marc Fuhrmann,
  • Tanja Junkers and
  • Hildegard Möbius

Beilstein J. Nanotechnol. 2019, 10, 1056–1064, doi:10.3762/bjnano.10.106

Graphical Abstract
  • magnetized sphere [20][22][23]: where Q is the quality factor of the cantilever, k is the spring constant, µ0 is the vacuum permeability, mp is the magnetic moment of the nanoparticle, mtip is the magnetic moment of the tip, and a is the distance between the two dipoles and is shown schematically in Figure 5
PDF
Album
Supp Info
Full Research Paper
Published 17 May 2019

Effects of gold and PCL- or PLLA-coated silica nanoparticles on brain endothelial cells and the blood–brain barrier

  • Aniela Bittner,
  • Angélique D. Ducray,
  • Hans Rudolf Widmer,
  • Michael H. Stoffel and
  • Meike Mevissen

Beilstein J. Nanotechnol. 2019, 10, 941–954, doi:10.3762/bjnano.10.95

Graphical Abstract
  • , differentiation, nor did it induce inflammation. rBCEC4 cells showed blood–brain barrier characteristics including tight junctions. None of the nanoparticles altered the expression of tight junctions or impaired the blood–brain barrier permeability. The findings suggest that effects of these nanoparticles on the
  • co-culture with SH-SY5Y cells were not affected by exposure to PEGylated Au-NPs [24]. Similar results were reported by Trickler et al. using Au-NPs in both a rat and a porcine model of the BBB. Smaller Au-NPs, however, increased the BBB-permeability in the rBMEC monolayer but not the pBMEC monolayer
  • blood–brain barrier permeability rBCEC4 cells were grown on filter insert membranes to allow for the investigation of NP effects on BBB permeability. The transport of two tracers across the cell monolayer and transendothelial electrical resistance (TEER) were measured. TEER measurements showed a
PDF
Album
Full Research Paper
Published 25 Apr 2019

Ceria/polymer nanocontainers for high-performance encapsulation of fluorophores

  • Kartheek Katta,
  • Dmitry Busko,
  • Yuri Avlasevich,
  • Katharina Landfester,
  • Stanislav Baluschev and
  • Rafael Muñoz-Espí

Beilstein J. Nanotechnol. 2019, 10, 522–530, doi:10.3762/bjnano.10.53

Graphical Abstract
  • materials. The core–shell structure of the hybrid organic–inorganic nanoparticles allows for the independent molecular design of each part. For instance, the oxygen permeability of the shell material can be lowered drastically by using semicrystalline nanocellulose [31]. Furthermore, a bovine serum albumin
  • oxygen. In our case, during the encapsulation of TDI molecules the molecular oxygen present in the external environment (e.g., in the water phase) can enter into already formed polymer nanocapsules due to the permeability of the thin polymer shell. Thus, singlet oxygen is created by the process of
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2019

Nanocomposite–parylene C thin films with high dielectric constant and low losses for future organic electronic devices

  • Marwa Mokni,
  • Gianluigi Maggioni,
  • Abdelkader Kahouli,
  • Sara M. Carturan,
  • Walter Raniero and
  • Alain Sylvestre

Beilstein J. Nanotechnol. 2019, 10, 428–441, doi:10.3762/bjnano.10.42

Graphical Abstract
  • ][22]. Parylene C is highly corrosion resistant on metallic surfaces and possesses outstanding electrical insulation with high tensile strength, moderate dielectric losses [16][23] and low permeability to gases [24][25]. Hydrophobicity [26] and physical stability [27] of parylene C make it a good
PDF
Album
Full Research Paper
Published 12 Feb 2019

Targeting strategies for improving the efficacy of nanomedicine in oncology

  • Gonzalo Villaverde and
  • Alejandro Baeza

Beilstein J. Nanotechnol. 2019, 10, 168–181, doi:10.3762/bjnano.10.16

Graphical Abstract
  • cannot leave the tissue resulting in accumulation over long periods of time. These two characteristics, the high permeability of tumoral blood vessels and the lack of an efficient drainage system are responsible for the accumulation of the nanoparticles into neoplastic tissues. Unfortunately, the EPR
PDF
Album
Review
Published 14 Jan 2019
Other Beilstein-Institut Open Science Activities