Search results

Search for "physicochemical properties" in Full Text gives 145 result(s) in Beilstein Journal of Nanotechnology.

Interaction of dermatologically relevant nanoparticles with skin cells and skin

  • Annika Vogt,
  • Fiorenza Rancan,
  • Sebastian Ahlberg,
  • Berouz Nazemi,
  • Chun Sik Choe,
  • Maxim E. Darvin,
  • Sabrina Hadam,
  • Ulrike Blume-Peytavi,
  • Kateryna Loza,
  • Jörg Diendorf,
  • Matthias Epple,
  • Christina Graf,
  • Eckart Rühl,
  • Martina C. Meinke and
  • Jürgen Lademann

Beilstein J. Nanotechnol. 2014, 5, 2363–2373, doi:10.3762/bjnano.5.245

Graphical Abstract
  • ., unintended environmental exposure (silica) versus intended exposure through application of sunscreen (titanium dioxide) or antiseptics (silver). Because each particle type exhibits specific physicochemical properties, we were able to apply different combinations of methods to examine skin penetration and
PDF
Album
Full Research Paper
Published 08 Dec 2014

Inorganic Janus particles for biomedical applications

  • Isabel Schick,
  • Steffen Lorenz,
  • Dominik Gehrig,
  • Stefan Tenzer,
  • Wiebke Storck,
  • Karl Fischer,
  • Dennis Strand,
  • Frédéric Laquai and
  • Wolfgang Tremel

Beilstein J. Nanotechnol. 2014, 5, 2346–2362, doi:10.3762/bjnano.5.244

Graphical Abstract
  • exploration of their physicochemical properties and large scale applications in the near future. Illustrations of the transition from isotropic to anisotropic particles. a) Evolution of the PL-peak position, b) schematic representation, and c) evolution of the PL-quantum yield for several core-shell quantum
PDF
Album
Review
Published 05 Dec 2014

Localized surface plasmon resonances in nanostructures to enhance nonlinear vibrational spectroscopies: towards an astonishing molecular sensitivity

  • Dan Lis and
  • Francesca Cecchet

Beilstein J. Nanotechnol. 2014, 5, 2275–2292, doi:10.3762/bjnano.5.237

Graphical Abstract
PDF
Album
Review
Published 28 Nov 2014

Nanoencapsulation of ultra-small superparamagnetic particles of iron oxide into human serum albumin nanoparticles

  • Matthias G. Wacker,
  • Mahmut Altinok,
  • Stephan Urfels and
  • Johann Bauer

Beilstein J. Nanotechnol. 2014, 5, 2259–2266, doi:10.3762/bjnano.5.235

Graphical Abstract
  • , and 30 µg/mg were freeze dried in presence of mannitol at a concentration of 3% (w/v) and tested after 1 day and 2 weeks with regards to their physicochemical properties after resuspension in water (Figure 6). All particle preparations stored under cool conditions remained stable over the evaluated
PDF
Album
Full Research Paper
Published 27 Nov 2014

Influence of stabilising agents and pH on the size of SnO2 nanoparticles

  • Olga Rac,
  • Patrycja Suchorska-Woźniak,
  • Marta Fiedot and
  • Helena Teterycz

Beilstein J. Nanotechnol. 2014, 5, 2192–2201, doi:10.3762/bjnano.5.228

Graphical Abstract
  • most widely studied and employed owing to its physicochemical properties. It features a high physicochemical stability and its electrical conductance changes predictably under the influence of various gases, which is the basis for operation of resistive gas sensors [5]. Despite the enormous number of
PDF
Album
Full Research Paper
Published 20 Nov 2014

PVP-coated, negatively charged silver nanoparticles: A multi-center study of their physicochemical characteristics, cell culture and in vivo experiments

  • Sebastian Ahlberg,
  • Alexandra Antonopulos,
  • Jörg Diendorf,
  • Ralf Dringen,
  • Matthias Epple,
  • Rebekka Flöck,
  • Wolfgang Goedecke,
  • Christina Graf,
  • Nadine Haberl,
  • Jens Helmlinger,
  • Fabian Herzog,
  • Frederike Heuer,
  • Stephanie Hirn,
  • Christian Johannes,
  • Stefanie Kittler,
  • Manfred Köller,
  • Katrin Korn,
  • Wolfgang G. Kreyling,
  • Fritz Krombach,
  • Jürgen Lademann,
  • Kateryna Loza,
  • Eva M. Luther,
  • Marcelina Malissek,
  • Martina C. Meinke,
  • Daniel Nordmeyer,
  • Anne Pailliart,
  • Jörg Raabe,
  • Fiorenza Rancan,
  • Barbara Rothen-Rutishauser,
  • Eckart Rühl,
  • Carsten Schleh,
  • Andreas Seibel,
  • Christina Sengstock,
  • Lennart Treuel,
  • Annika Vogt,
  • Katrin Weber and
  • Reinhard Zellner

Beilstein J. Nanotechnol. 2014, 5, 1944–1965, doi:10.3762/bjnano.5.205

Graphical Abstract
  • main text. 10.3762/bjnano.5.205 Abstract PVP-capped silver nanoparticles with a diameter of the metallic core of 70 nm, a hydrodynamic diameter of 120 nm and a zeta potential of −20 mV were prepared and investigated with regard to their biological activity. This review summarizes the physicochemical
  • properties (dissolution, protein adsorption, dispersability) of these nanoparticles and the cellular consequences of the exposure of a broad range of biological test systems to this defined type of silver nanoparticles. Silver nanoparticles dissolve in water in the presence of oxygen. In addition, in
PDF
Album
Review
Published 03 Nov 2014

In vitro and in vivo interactions of selected nanoparticles with rodent serum proteins and their consequences in biokinetics

  • Wolfgang G. Kreyling,
  • Stefanie Fertsch-Gapp,
  • Martin Schäffler,
  • Blair D. Johnston,
  • Nadine Haberl,
  • Christian Pfeiffer,
  • Jörg Diendorf,
  • Carsten Schleh,
  • Stephanie Hirn,
  • Manuela Semmler-Behnke,
  • Matthias Epple and
  • Wolfgang J. Parak

Beilstein J. Nanotechnol. 2014, 5, 1699–1711, doi:10.3762/bjnano.5.180

Graphical Abstract
  • responses in tissues and cells cannot be neglected a priori but require thorough investigations. Therefore, we studied the interactions and protein binding kinetics of blood serum proteins with a number of engineered NP as a function of their physicochemical properties. Here we show by in vitro incubation
  • spheres (AuNP), surface-modified with the same ionic ligand; as well as 5 nm AuNP with five different surface modifications on the binding to serum proteins by using proteomics analyses. We found that the binding of numerous serum proteins depended strongly on the physicochemical properties of the AuNP
  • . These in vitro results helped us substantially in the interpretation of our numerous in vivo biokinetics studies performed in rodents using the same NP. These had shown that not only the physicochemical properties determined the AuNP translocation from the organ of intake towards blood circulation and
PDF
Album
Review
Published 02 Oct 2014

In vitro interaction of colloidal nanoparticles with mammalian cells: What have we learned thus far?

  • Moritz Nazarenus,
  • Qian Zhang,
  • Mahmoud G. Soliman,
  • Pablo del Pino,
  • Beatriz Pelaz,
  • Susana Carregal-Romero,
  • Joanna Rejman,
  • Barbara Rothen-Rutishauser,
  • Martin J. D. Clift,
  • Reinhard Zellner,
  • G. Ulrich Nienhaus,
  • James B. Delehanty,
  • Igor L. Medintz and
  • Wolfgang J. Parak

Beilstein J. Nanotechnol. 2014, 5, 1477–1490, doi:10.3762/bjnano.5.161

Graphical Abstract
  • penetration, which need to be considered in in vivo experiments, can be neglected. The kinetics of internalization can depend strongly on the physicochemical properties of the NPs, the type of cells, and other parameters. Cellular uptake studies of NPs require as much characterization of the NP materials as
  • physicochemical properties of the NPs can be found. One, however, has to be aware that many physicochemical properties of NPs, such as size, shape, charge, and colloidal stability are highly entangled [14]. The physicochemical properties are not intrinsically associated with the NPs, but result from the
  • consider for all correlations between the NP–cell interactions and the physicochemical properties of the NPs. Reports, in which no characterization of colloidal properties has been performed, therefore have to be regarded very critically. Unfortunately, many NPs are not colloidally stable in cell culture
PDF
Album
Review
Published 09 Sep 2014

Nanoporous composites prepared by a combination of SBA-15 with Mg–Al mixed oxides. Water vapor sorption properties

  • Amaury Pérez-Verdejo,
  • Alvaro Sampieri,
  • Heriberto Pfeiffer,
  • Mayra Ruiz-Reyes,
  • Juana-Deisy Santamaría and
  • Geolar Fetter

Beilstein J. Nanotechnol. 2014, 5, 1226–1234, doi:10.3762/bjnano.5.136

Graphical Abstract
  • hydrophobic–hydrophilic character, among other physicochemical properties. The most studied multifunctional materials are the hybrids, which are good candidates for biomedical applications, e.g., biosensors, artificial bonds and bioadsorbents [4][5]. Instead, a few works report the design of purely inorganic
  • candidates to be combined homogenously with mesoporous siliceous materials to improve their physicochemical properties. Hydrotalcites are lamellar materials with basic properties, but with a relative low surface area and poor mesoporosity [12]. Thus, large molecules accessibility toward active sites is a
PDF
Album
Supp Info
Full Research Paper
Published 07 Aug 2014

Functionalized nanostructures for enhanced photocatalytic performance under solar light

  • Liejin Guo,
  • Dengwei Jing,
  • Maochang Liu,
  • Yubin Chen,
  • Shaohua Shen,
  • Jinwen Shi and
  • Kai Zhang

Beilstein J. Nanotechnol. 2014, 5, 994–1004, doi:10.3762/bjnano.5.113

Graphical Abstract
  • have been reported to be effective to enhance photocatalytic H2 evolution on CdS [25]. Low-cost WC was also used as efficient cocatalyst on CdS because of its low overpotential for hydrogen production and proper physicochemical properties [26]. The Xu group has studied the effect of NiS working as a
PDF
Album
Review
Published 09 Jul 2014

Controlling mechanical properties of bio-inspired hydrogels by modulating nano-scale, inter-polymeric junctions

  • Seonki Hong,
  • Hyukjin Lee and
  • Haeshin Lee

Beilstein J. Nanotechnol. 2014, 5, 887–894, doi:10.3762/bjnano.5.101

Graphical Abstract
  • ). This result strongly suggests that one can control physicochemical properties of a wide variety of PEG-containing biomaterials by designing effective conjugation chemistry. We chose PEG hydrogels as an example. Effect of the amine group in PEG gelation I: mechanical properties of hydrogels To explore
  • importance of catecholamine quinone tanning. Thus, the results demonstrated herein can be a useful toolkit to further control physicochemical properties of biomaterials. Conclusion In summary, we demonstrated that the particular quinone tanning process simultaneously involved with catechol and amine was
PDF
Album
Supp Info
Full Research Paper
Published 23 Jun 2014

Nanostructure sensitization of transition metal oxides for visible-light photocatalysis

  • Hongjun Chen and
  • Lianzhou Wang

Beilstein J. Nanotechnol. 2014, 5, 696–710, doi:10.3762/bjnano.5.82

Graphical Abstract
  • research area of photocatalysis has attracted increasing attention. Compared with bulk materials, nanomaterials often exhibit unusual features such as large surface areas, diverse morphologies and size-dependent physicochemical properties. Size-dependent properties include an increased absorption
  • solution for the photosensitizers to anchor. The hybridization of exfoliated nanosheets with nanosized photosensitizers often shows a tunable electronic structure and new physicochemical properties. All these features attribute to a promising future of nanostructure sensitization in the ion-exchangeable
PDF
Album
Review
Published 23 May 2014

Morphological characterization of fullerene–androsterone conjugates

  • Alberto Ruiz,
  • Margarita Suárez,
  • Nazario Martin,
  • Fernando Albericio and
  • Hortensia Rodríguez

Beilstein J. Nanotechnol. 2014, 5, 374–379, doi:10.3762/bjnano.5.43

Graphical Abstract
  • testosterone, the most prevalent androgen in males. The conjugation of steroids to other chemically or biologically relevant molecules is a common approach in the search for new biomedical and chemical applications. The coupling of C60 with a steroid changes the physicochemical properties of this molecule
PDF
Album
Supp Info
Full Research Paper
Published 28 Mar 2014

En route to controlled catalytic CVD synthesis of densely packed and vertically aligned nitrogen-doped carbon nanotube arrays

  • Slawomir Boncel,
  • Sebastian W. Pattinson,
  • Valérie Geiser,
  • Milo S. P. Shaffer and
  • Krzysztof K. K. Koziol

Beilstein J. Nanotechnol. 2014, 5, 219–233, doi:10.3762/bjnano.5.24

Graphical Abstract
  • ] atoms has been frequently used to enhance or tune their physicochemical properties. Among the elemental dopants, nitrogen emerges as of particular interest in electronics since N-CNTs should be characterized by a higher electrical conductivity (n-doping). Consequently, the significance of N-CNTs in a
PDF
Album
Supp Info
Full Research Paper
Published 03 Mar 2014

Functionalised zinc oxide nanowire gas sensors: Enhanced NO2 gas sensor response by chemical modification of nanowire surfaces

  • Eric R. Waclawik,
  • Jin Chang,
  • Andrea Ponzoni,
  • Isabella Concina,
  • Dario Zappa,
  • Elisabetta Comini,
  • Nunzio Motta,
  • Guido Faglia and
  • Giorgio Sberveglieri

Beilstein J. Nanotechnol. 2012, 3, 368–377, doi:10.3762/bjnano.3.43

Graphical Abstract
  • the desired power source. A case in point is the monitoring of gas emissions remotely, in outdoor environments where mains power may be unavailable. For this application, highly responsive, low-power and thus low-temperature gas sensors would be advantageous. Both the structural and physicochemical
  • properties of metal-oxide films utilised in solid-state chemical sensors have proven to strongly affect the gas response in these devices. Not only do simple structural elements such as grain size play a significant role in gas response, but also crystallite shape, crystallographic orientation, film
PDF
Album
Full Research Paper
Published 02 May 2012

Surface functionalization of aluminosilicate nanotubes with organic molecules

  • Wei Ma,
  • Weng On Yah,
  • Hideyuki Otsuka and
  • Atsushi Takahara

Beilstein J. Nanotechnol. 2012, 3, 82–100, doi:10.3762/bjnano.3.10

Graphical Abstract
  • negative charge to imogolite, which restricts the effective motion of positively charged species on the imogolite surface. Poly(3-hexyl thiophene)/imogolite nanofiber hybrid Polythiophenes are one of the well-known families of conductive polymers, and their physicochemical properties, such as their
PDF
Album
Review
Published 02 Feb 2012

Impact of cell shape in hierarchically structured plant surfaces on the attachment of male Colorado potato beetles (Leptinotarsa decemlineata)

  • Bettina Prüm,
  • Robin Seidel,
  • Holger Florian Bohn and
  • Thomas Speck

Beilstein J. Nanotechnol. 2012, 3, 57–64, doi:10.3762/bjnano.3.7

Graphical Abstract
  • higher forces. Due to the softness of the petals, increased traction forces might be associated with a possible punching of the surface due to the forces applied by the claws [21]. The influence of the physicochemical properties of surfaces on insect attachment has been discussed in several studies [21
PDF
Album
Video
Full Research Paper
Published 23 Jan 2012

Characterization of protein adsorption onto FePt nanoparticles using dual-focus fluorescence correlation spectroscopy

  • Pauline Maffre,
  • Karin Nienhaus,
  • Faheem Amin,
  • Wolfgang J. Parak and
  • G. Ulrich Nienhaus

Beilstein J. Nanotechnol. 2011, 2, 374–383, doi:10.3762/bjnano.2.43

Graphical Abstract
  • well-controlled physicochemical properties including size, shape, charge, chemical composition and solubility. Many of these NPs have already found their way into consumer products. Owing to their small size, NPs may potentially invade all parts of the human body including tissues, cells and even
PDF
Album
Full Research Paper
Published 12 Jul 2011

Dynamics of capillary infiltration of liquids into a highly aligned multi-walled carbon nanotube film

  • Sławomir Boncel,
  • Krzysztof Z. Walczak and
  • Krzysztof K. K. Koziol

Beilstein J. Nanotechnol. 2011, 2, 311–317, doi:10.3762/bjnano.2.36

Graphical Abstract
  • material can potentially be used in a production of ultra-light hydrophobic composites exhibiting other superb physicochemical properties originating from the as-synthesised nanotubes. Experimental A solution of ferrocene (6 wt %, 98%, Acros Organics) in toluene (spectrophotometric grade, d = 0.86 g/cm3
PDF
Album
Letter
Published 20 Jun 2011

The effect of surface anisotropy in the slippery zone of Nepenthes alata pitchers on beetle attachment

  • Elena V. Gorb and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2011, 2, 302–310, doi:10.3762/bjnano.2.35

Graphical Abstract
  • surfaces than on their replicas may be explained by the different mechanical and physicochemical properties of both substrates. We surmise that the softer and more compliant material of the plant tissue promotes insect interlocking due to easier indentation of claw tips into a softer substrate. This effect
PDF
Album
Full Research Paper
Published 16 Jun 2011
Other Beilstein-Institut Open Science Activities