Search results

Search for "plant" in Full Text gives 113 result(s) in Beilstein Journal of Nanotechnology.

Fabrication and characterization of branched carbon nanostructures

  • Sharali Malik,
  • Yoshihiro Nemoto,
  • Hongxuan Guo,
  • Katsuhiko Ariga and
  • Jonathan P. Hill

Beilstein J. Nanotechnol. 2016, 7, 1260–1266, doi:10.3762/bjnano.7.116

Graphical Abstract
  • experiments [12][13][14] that branched fibers can greatly enhance interfacial bonding and dispersability. Such an approach is exemplified by the process of adding straw (branched plant fibers) to mud to make stronger bricks which has been used since the Neolithic period, i.e., before 3400 BC [15]. More
PDF
Album
Full Research Paper
Published 05 Sep 2016

Experimental and simulation-based investigation of He, Ne and Ar irradiation of polymers for ion microscopy

  • Lukasz Rzeznik,
  • Yves Fleming,
  • Tom Wirtz and
  • Patrick Philipp

Beilstein J. Nanotechnol. 2016, 7, 1113–1128, doi:10.3762/bjnano.7.104

Graphical Abstract
  • microbiology [9] and plant biology [10][11]. In studies of this kind, elemental mapping by dynamic SIMS has the advantage of high lateral resolution and better chemical sensitivity than many other techniques. To get valuable information from samples, it is important to control the interactions between primary
PDF
Album
Full Research Paper
Published 02 Aug 2016

Templated green synthesis of plasmonic silver nanoparticles in onion epidermal cells suitable for surface-enhanced Raman and hyper-Raman scattering

  • Marta Espina Palanco,
  • Klaus Bo Mogensen,
  • Marina Gühlke,
  • Zsuzsanna Heiner,
  • Janina Kneipp and
  • Katrin Kneipp

Beilstein J. Nanotechnol. 2016, 7, 834–840, doi:10.3762/bjnano.7.75

Graphical Abstract
  • environment supports the generation of silver nanostructures in two ways. The plant tissue delivers reducing chemicals for the initial formation of small silver clusters and their following conversion to plasmonic particles. Additionally, the natural morphological structures of the onion layers, in particular
  • nanoparticles using many very different pre-treated plant materials, such as extracts collected from leafs or vegetables and fruits has been demonstrated in numerous publications [15][16][17][18][19]. The diversity of bioorganic molecules available in plants provides many combinations of reducing and
  • stabilizing agents. This gives rise to a broad variety of parameters in the green preparation process, resulting in metal nanoparticles of different sizes and shapes. While pre-treated plant materials such as extract and juice have been used in former studies [14][15][18][19][20]. In this article, we
PDF
Album
Full Research Paper
Published 09 Jun 2016

Comparative kinematical analyses of Venus flytrap (Dionaea muscipula) snap traps

  • Simon Poppinga,
  • Tim Kampowski,
  • Amélie Metzger,
  • Olga Speck and
  • Thomas Speck

Beilstein J. Nanotechnol. 2016, 7, 664–674, doi:10.3762/bjnano.7.59

Graphical Abstract
  • Simon Poppinga Tim Kampowski Amelie Metzger Olga Speck Thomas Speck Plant Biomechanics Group, Botanic Garden, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg, Germany Freiburg
  • context. Keywords: biomechanics; carnivorous plant; Droseraceae; fast plant movement; functional morphology; Introduction The terrestrial Venus flytrap (Dionaea muscipula) is certainly the most iconic carnivorous plant [1][2][3], but the spectacular movement of its snap traps (Figure 1) is not yet fully
  • a firmly sealed digestion chamber [2] that acts similar to an animal stomach. Knowledge about the functionality of the traps under various, naturally occurring environmental conditions and in the different developmental stages of the plant is scarce at best. Dionaea grows in habitats that become
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2016

Novel roles for well-known players: from tobacco mosaic virus pests to enzymatically active assemblies

  • Claudia Koch,
  • Fabian J. Eber,
  • Carlos Azucena,
  • Alexander Förste,
  • Stefan Walheim,
  • Thomas Schimmel,
  • Alexander M. Bittner,
  • Holger Jeske,
  • Hartmut Gliemann,
  • Sabine Eiben,
  • Fania C. Geiger and
  • Christina Wege

Beilstein J. Nanotechnol. 2016, 7, 613–629, doi:10.3762/bjnano.7.54

Graphical Abstract
  • Claudia Koch Fabian J. Eber Carlos Azucena Alexander Forste Stefan Walheim Thomas Schimmel Alexander M. Bittner Holger Jeske Hartmut Gliemann Sabine Eiben Fania C. Geiger Christina Wege Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology
  • Nanogune, Tolosa Hiribidea 76, E-20018 Donostia-San Sebastián, Spain, and Ikerbasque, Maria Díaz de Haro 3, E-48013 Bilbao, Spain 10.3762/bjnano.7.54 Abstract The rod-shaped nanoparticles of the widespread plant pathogen tobacco mosaic virus (TMV) have been a matter of intense debates and cutting-edge
  • research for more than a hundred years. During the late 19th century, their behavior in filtration tests applied to the agent causing the 'plant mosaic disease' eventually led to the discrimination of viruses from bacteria. Thereafter, they promoted the development of biophysical cornerstone techniques
PDF
Album
Review
Published 25 Apr 2016

Green and energy-efficient methods for the production of metallic nanoparticles

  • Mitra Naghdi,
  • Mehrdad Taheran,
  • Satinder K. Brar,
  • M. Verma,
  • R. Y. Surampalli and
  • J. R. Valero

Beilstein J. Nanotechnol. 2015, 6, 2354–2376, doi:10.3762/bjnano.6.243

Graphical Abstract
  • -toxic reagents remains a challenge for researchers and more studies are needed to achieve high quality products with sustainable commercial viability [6][13][14][19][20]. Recently, biological systems including microbes and fungi as reactors and plant extracts as precursors have been intensively explored
  • applications. Plant-derived components Leela and Vivekanandan investigated the capability of leaf extracts of different plants including Helianthus annus, Basella alba, Oryza sativa, Saccharum officinarum, Sorghum bicolour and Zea mays for the reduction of Ag precursor. They found that H. annus has strong
  • potential for the reduction of Ag ions and is therefore promising in the development of Ag NPs [50]. Also Song and Kim used five plant leaf extracts including Pinus desiflora, Diopyros kaki, Gingko biloba, Magnolia kobus and Platanus orientalis for the synthesis of Ag NPs from AgNO3. They found that the
PDF
Album
Review
Published 10 Dec 2015

Green synthesis, characterization and catalytic activity of natural bentonite-supported copper nanoparticles for the solvent-free synthesis of 1-substituted 1H-1,2,3,4-tetrazoles and reduction of 4-nitrophenol

  • Akbar Rostami-Vartooni,
  • Mohammad Alizadeh and
  • Mojtaba Bagherzadeh

Beilstein J. Nanotechnol. 2015, 6, 2300–2309, doi:10.3762/bjnano.6.236

Graphical Abstract
  • recent research on tetrazoles, 1-substituted 1H-1,2,3,4-tetrazoles was found to be a special category due to their biological activity [16]. The plant biosynthesis of nanoparticles immobilized on natural supports is a subject of new research as little has been published on this topic [17][18]. Therefore
  • reagents All reagents were purchased from the Merck and Sigma-Aldrich and used without further purification. The bentonite and Thymus vulgaris plant used in this paper were collected from the Vartoon region (Isfahan, Iran). The IR spectra were recorded on a JASCO, FT/IR-6300 instrument in KBr pellets. The
  • NPs/bentonite The Cu NPs/bentonite composite was prepared by a simple and inexpensive method involving the immobilization of Cu NPs on bentonite using an aqueous extract of Thymus vulgaris without the usage of any special capping agents or surfactant template. The plant not only functioned as a
PDF
Album
Full Research Paper
Published 03 Dec 2015

Analysis of soil bacteria susceptibility to manufactured nanoparticles via data visualization

  • Rong Liu,
  • Yuan Ge,
  • Patricia A. Holden and
  • Yoram Cohen

Beilstein J. Nanotechnol. 2015, 6, 1635–1651, doi:10.3762/bjnano.6.166

Graphical Abstract
  • legume roots to fix atmospheric N2 into ammonium for plant growth [48]. One can also explore the effect of treatment on bacterial taxa (treatment → bacterial taxon). For example, the relative abundances of the 14 order taxa displayed in Figure 4 illustrates treatment with ZnO MNPs at the dose of 0.1 mg/g
PDF
Album
Full Research Paper
Published 28 Jul 2015

Peptide-equipped tobacco mosaic virus templates for selective and controllable biomineral deposition

  • Klara Altintoprak,
  • Axel Seidenstücker,
  • Alexander Welle,
  • Sabine Eiben,
  • Petia Atanasova,
  • Nina Stitz,
  • Alfred Plettl,
  • Joachim Bill,
  • Hartmut Gliemann,
  • Holger Jeske,
  • Dirk Rothenstein,
  • Fania Geiger and
  • Christina Wege

Beilstein J. Nanotechnol. 2015, 6, 1399–1412, doi:10.3762/bjnano.6.145

Graphical Abstract
  • Klara Altintoprak Axel Seidenstucker Alexander Welle Sabine Eiben Petia Atanasova Nina Stitz Alfred Plettl Joachim Bill Hartmut Gliemann Holger Jeske Dirk Rothenstein Fania Geiger Christina Wege Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems
  • weight polymers [15], carbon nanotubes [16], peptide nanotubes [17], certain plant viruses [18][19][20][21], filamentous bacteriophages [22][23], and bacterial flagellae [24] have been evaluated for their applicability on a technical scale. To achieve control over mineral precipitation, the modification
  • virus (TMV) were used as templates for coating with inorganic materials including Pt, Au [28], Ag [29][30], Pd [31][32], TiO2 [33], SiO2 [34], NiO [35], CdS [21], CoPt, FePt, ZnS [27][36] and ZnO [37][38][39]. Among the virus-based templates, plant viruses are especially suitable nanostructured
PDF
Album
Full Research Paper
Published 25 Jun 2015

Natural and artificial binders of polyriboadenylic acid and their effect on RNA structure

  • Giovanni N. Roviello,
  • Domenica Musumeci,
  • Valentina Roviello,
  • Marina Pirtskhalava,
  • Alexander Egoyan and
  • Merab Mirtskhulava

Beilstein J. Nanotechnol. 2015, 6, 1338–1347, doi:10.3762/bjnano.6.138

Graphical Abstract
  • helix poly(rA) structures induced at low pH conditions. Recent reports on poly(rA) binding activity of the plant alkaloid chelerythrine (Figure 3) indicated that this natural compound was also able to induce poly(rA) self-structures with the formation of a poly(rA) helix that showed a cooperative
  • showed a strong and specific binding to triple helical as well as double helical complexes of poly(rA) with poly(rU). Aristololactam-β-D-glucoside alkaloid: Aristololactam-β-D-glucoside (Figure 4) is another plant alkaloid whose structure also contains a sugar moiety which is able to interact, even if
PDF
Album
Review
Published 17 Jun 2015

Microwave assisted synthesis and characterisation of a zinc oxide/tobacco mosaic virus hybrid material. An active hybrid semiconductor in a field-effect transistor device

  • Shawn Sanctis,
  • Rudolf C. Hoffmann,
  • Sabine Eiben and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2015, 6, 785–791, doi:10.3762/bjnano.6.81

Graphical Abstract
  • Biology and Plant Virology, University of Stuttgart, 70550 Stuttgart, Germany 10.3762/bjnano.6.81 Abstract Tobacco mosaic virus (TMV) has been employed as a robust functional template for the fabrication of a TMV/zinc oxide field effect transistor (FET). A microwave based approach, under mild conditions
  • variety of inorganic materials under mild fabrication conditions. With its well-defined tube-like structure, the tobacco mosaic virus is one the most widely studied plant virus consisting of ≈2130 identical protein units, a length of 300 nm and an outer and inner diameter of 18 nm and 4 nm, respectively
PDF
Album
Supp Info
Video
Full Research Paper
Published 20 Mar 2015

Mapping of elasticity and damping in an α + β titanium alloy through atomic force acoustic microscopy

  • M. Kalyan Phani,
  • Anish Kumar,
  • T. Jayakumar,
  • Walter Arnold and
  • Konrad Samwer

Beilstein J. Nanotechnol. 2015, 6, 767–776, doi:10.3762/bjnano.6.79

Graphical Abstract
  • films [8], NiMnGa films [9], Arabidopsis plant [10], polystyrene–propylene blends [11], nickel base alloys [12][13], ferritic steels [13], and metallic glasses [14]. Besides contact-resonance based methods, multi-frequency AFM techniques have also been used for measurement of elastic and damping
PDF
Album
Full Research Paper
Published 18 Mar 2015

Exploiting the hierarchical morphology of single-walled and multi-walled carbon nanotube films for highly hydrophobic coatings

  • Francesco De Nicola,
  • Paola Castrucci,
  • Manuela Scarselli,
  • Francesca Nanni,
  • Ilaria Cacciotti and
  • Maurizio De Crescenzi

Beilstein J. Nanotechnol. 2015, 6, 353–360, doi:10.3762/bjnano.6.34

Graphical Abstract
  • of water [9]. In particular, hierarchical surface morphologies are a recent concept introduced to explain the wetting properties of surfaces such as plant leaves [2][3], bird feathers [10], and insect legs [11]. These surfaces are made of a hierarchical micro- and nanomorphology which improves their
  • SWCNT/MWCNT samples are comparable with those of micropapillae in hydrophobic plant leaves. (ii) The hierarchical surface morphology lead to the formation of a consistent amount of air pockets, as a consequence of the transition from the hydrophobic Wenzel state to the hydrophobic Cassie–Baxter
PDF
Album
Full Research Paper
Published 02 Feb 2015

Green preparation and spectroscopic characterization of plasmonic silver nanoparticles using fruits as reducing agents

  • Jes Ærøe Hyllested,
  • Marta Espina Palanco,
  • Nicolai Hagen,
  • Klaus Bo Mogensen and
  • Katrin Kneipp

Beilstein J. Nanotechnol. 2015, 6, 293–299, doi:10.3762/bjnano.6.27

Graphical Abstract
  • process. The most popular process among the bottom up methods might be the preparation of silver and gold nanoparticles in aqueous solution by the reduction of silver and gold salts using sodium citrate or sodium borohydride as reducing agent [9]. Recently it has been identified that also plant extracts
  • reducing and also stabilizing agents [11]. Overall, using plant materials offers an eco-friendly way to prepare silver- and gold nanoparticles. Moreover, the diversity of chemical composition of plants, i.e., the combination of various reducing and stabilizing agents results in a broad variety of
  • behavior of the green silver nanoparticles might be explained by the presence of other molecules on the surface of the particles related to plant materials introduced due to the green preparation, which prevent that particles come very close together and even touch each other. Moreover, these residual
PDF
Album
Supp Info
Full Research Paper
Published 26 Jan 2015

Aquatic versus terrestrial attachment: Water makes a difference

  • Petra Ditsche and
  • Adam P. Summers

Beilstein J. Nanotechnol. 2014, 5, 2424–2439, doi:10.3762/bjnano.5.252

Graphical Abstract
  • important difference between adhesion in terrestrial and aquatic systems. Nevertheless, there are exceptions. Some terrestrial animals can step in droplets, e.g., on plant surfaces or even be completely submerged under water for a short time due to heavy rainfall. For example, the beetle Gastrophysa
PDF
Album
Review
Published 17 Dec 2014

From sticky to slippery: Biological and biologically-inspired adhesion and friction

  • Stanislav N. Gorb and
  • Kerstin Koch

Beilstein J. Nanotechnol. 2014, 5, 1450–1451, doi:10.3762/bjnano.5.157

Graphical Abstract
  • of cells, insect feet, snake skin, plant traps, and bird wings are just a few striking examples of a tremendous diversity of biological surfaces and systems with remarkable contact behavior about many of which our knowledge is limited compared to medically relevant biotribosystems. Since the 90s a
PDF
Album
Video
Editorial
Published 03 Sep 2014

Liquid fuel cells

  • Grigorii L. Soloveichik

Beilstein J. Nanotechnol. 2014, 5, 1399–1418, doi:10.3762/bjnano.5.153

Graphical Abstract
  • or chemically at a central plant). In the latter case, the fuel cells can be recharged by using the existing infrastructure for the delivery of liquid fuels. The theoretical open circuit potential (OCP) of electrochemical cells based on the reaction in Equation 7 is in the range of 1.06–1.11 V if the
  • Glycerol as a nontoxic fuel for fuel cells was proposed in 1964 [107]. Glycerol is the major product in biodiesel production by transesterification of plant oils and animal fats. Although it is used as a raw material in the chemical industry and animal feed, its market is saturated thus limiting the
PDF
Album
Review
Published 29 Aug 2014

Insect attachment on crystalline bioinspired wax surfaces formed by alkanes of varying chain lengths

  • Elena Gorb,
  • Sandro Böhm,
  • Nadine Jacky,
  • Louis-Philippe Maier,
  • Kirstin Dening,
  • Sasha Pechook,
  • Boaz Pokroy and
  • Stanislav Gorb

Beilstein J. Nanotechnol. 2014, 5, 1031–1041, doi:10.3762/bjnano.5.116

Graphical Abstract
  • Engineering and the Russell Berrie Nanotechnology Institute, Technion – Israel Institute of Technology, 32000 Haifa, Israel 10.3762/bjnano.5.116 Abstract The impeding effect of plant surfaces covered with three-dimensional wax on attachment and locomotion of insects has been shown previously in numerous
  • attachment and higher pull-off forces of polydimethylsiloxane probes on wax surfaces having a higher density of wax coverage, created by smaller crystals. Keywords: Coccinella septempunctata; insect–plant interactions; plant waxes; pull-off force; traction force; Introduction During their locomotion
  • between plants and insects, plants have developed surfaces that enable pollinators and symbiotic insects to attach to and walk on, as well as surface structures that reduce insect attachment [11]. The impeding effects of plant surfaces on insect attachment ability depend on the concrete plant–insect
PDF
Album
Full Research Paper
Published 14 Jul 2014

Measuring air layer volumes retained by submerged floating-ferns Salvinia and biomimetic superhydrophobic surfaces

  • Matthias J. Mayser,
  • Holger F. Bohn,
  • Meike Reker and
  • Wilhelm Barthlott

Beilstein J. Nanotechnol. 2014, 5, 812–821, doi:10.3762/bjnano.5.93

Graphical Abstract
  • Matthias J. Mayser Holger F. Bohn Meike Reker Wilhelm Barthlott Microfluidics Lab, GRASP, University of Liege, Chemin des Chevreuils 1, 4000 Liege, Belgium Nees-Institute for Biodiversity of Plants, University Bonn, Venusbergweg 22, 53115 Bonn, Germany Plant Biomechanics Group Freiburg, University
  • structured, superhydrophobic, self-cleaning plant surfaces (Lotus-effect) [1][2] there has been an increasing interest in superhydrophobic surfaces [3][4][5]. Superhydrophobicity describes the extreme repellence of water by a surface. The level of water repellence is usually described by the contact angle
  • applications for these trapped air layers in the Cassie wetting regime have been proposed which include drag reducing ship coatings or fluid channels [22][23][24][25][26] with the capability of 30% drag reduction [27] and could provide high economic and ecologic value [28][29]. While superhydrophobic plant
PDF
Album
Full Research Paper
Published 10 Jun 2014

The surface microstructure of cusps and leaflets in rabbit and mouse heart valves

  • Xia Ye,
  • Bharat Bhushan,
  • Ming Zhou and
  • Weining Lei

Beilstein J. Nanotechnol. 2014, 5, 622–629, doi:10.3762/bjnano.5.73

Graphical Abstract
  • plant leaves have been studied beginning with the lotus leaf [1][2][3]. Researchers then studied the microstructures of the India canna leaf, the rice leaf, and the leaf of Colocasia esculenta [4][5]. Subsequently, the study of surface microstructures expanded to animals. Researchers studied surface
PDF
Album
Full Research Paper
Published 13 May 2014

Applicability and costs of nanofiltration in combination with photocatalysis for the treatment of dye house effluents

  • Wolfgang M. Samhaber and
  • Minh Tan Nguyen

Beilstein J. Nanotechnol. 2014, 5, 476–484, doi:10.3762/bjnano.5.55

Graphical Abstract
  • attributed to the membrane replacement costs, which directly depend on the required membrane area and therefore, on the size of the plant that is used for the treatment process. When membrane plants are applied, it is a challenge to keep membrane costs low, because of the frequent need for membrane
  • operating costs, as given in Table 1, are between 204 and 408 US$, which is roughly seven times the assumed membrane replacement costs (MRC) of 30 to 60 US$ per m2 of the spirally wound membrane elements used in the focused treatment plant. The estimated figures of fixed and variable costs are empirical
  • 200 and 600 L/m2·d or, when calculated for one year, of 40 to 120 m3/(m2·a). Depreciation and maintenance costs incur independently of the operatinal status of the plant. That is, no matter whether or not there is a demand to treat effluents, the periodical CIP is included in the maintenance cost
PDF
Album
Full Research Paper
Published 15 Apr 2014

A catechol biosensor based on electrospun carbon nanofibers

  • Dawei Li,
  • Zengyuan Pang,
  • Xiaodong Chen,
  • Lei Luo,
  • Yibing Cai and
  • Qufu Wei

Beilstein J. Nanotechnol. 2014, 5, 346–354, doi:10.3762/bjnano.5.39

Graphical Abstract
  • fast and effective methods to detect phenolic compounds. Laccase (benzendiol:oxygen oxidoreductases; EC 1.10.3.2), a multicopper oxidase widely distributed in plant and fungal species, can reduce oxygen directly to water through a four-electron transfer step, and this chemical reaction does not produce
PDF
Album
Full Research Paper
Published 24 Mar 2014

Atomic force microscopy recognition of protein A on Staphylococcus aureus cell surfaces by labelling with IgG–Au conjugates

  • Elena B. Tatlybaeva,
  • Hike N. Nikiyan,
  • Alexey S. Vasilchenko and
  • Dmitri G. Deryabin

Beilstein J. Nanotechnol. 2013, 4, 743–749, doi:10.3762/bjnano.4.84

Graphical Abstract
  • ]. The mica surface is most commonly used for protein AFM imaging because of its hydrophilic character, its atomically flatness and the high affinity for proteins [28]. Atomic force microscopy imaging Images were collected by using an SMM-2000 atomic force microscope (JSC "Proton-MIET Plant", Russia
PDF
Album
Full Research Paper
Published 11 Nov 2013

Apertureless scanning near-field optical microscopy of sparsely labeled tobacco mosaic viruses and the intermediate filament desmin

  • Alexander Harder,
  • Mareike Dieding,
  • Volker Walhorn,
  • Sven Degenhard,
  • Andreas Brodehl,
  • Christina Wege,
  • Hendrik Milting and
  • Dario Anselmetti

Beilstein J. Nanotechnol. 2013, 4, 510–516, doi:10.3762/bjnano.4.60

Graphical Abstract
  • , Universitätsstrasse 25, D-33615 Bielefeld, Germany Department of Molecular Biology and Plant Virology, Institute of Biology, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Heart and Diabetes Center NRW, Ruhr
  • and might give insight in the patho-mechanism. The tobacco mosaic virus (TMV) is a tubular shaped plant virus with a length of 300 nm and a diameter of 18 nm. It is composed of 2130 identical capsid protein subunits helically arranged on a single RNA strand thereby enclosing an inner longitudinal
  • channel [25]. Apart from plant research, TMV is also important for nanotechnology applications of virus-derived biotemplates [26][27][28][29]. The self-assembly of the capsid components and the homogeneous nucleoprotein tube diameter make TMV an attractive scaffold for nanotechnological applications such
PDF
Album
Full Research Paper
Published 11 Sep 2013

A nano-graphite cold cathode for an energy-efficient cathodoluminescent light source

  • Alexander N. Obraztsov,
  • Victor I. Kleshch and
  • Elena A. Smolnikova

Beilstein J. Nanotechnol. 2013, 4, 493–500, doi:10.3762/bjnano.4.58

Graphical Abstract
  • is a decrease of energy loss on heating only from 95 to 90%. At the same time, production costs for these lamps, i.e. consumption and waste of energy at the production plant, are many times higher compared to the production costs of incandescent bulbs. Thus, the development of new types of light
PDF
Album
Full Research Paper
Published 28 Aug 2013
Other Beilstein-Institut Open Science Activities