Search results

Search for "poly(ethylene glycol) (PEG)" in Full Text gives 31 result(s) in Beilstein Journal of Nanotechnology.

Modification of a single-molecule AFM probe with highly defined surface functionality

  • Fei Long,
  • Bin Cao,
  • Ashok Khanal,
  • Shiyue Fang and
  • Reza Shahbazian-Yassar

Beilstein J. Nanotechnol. 2014, 5, 2122–2128, doi:10.3762/bjnano.5.221

Graphical Abstract
  • a monolayer of amino-terminated poly(ethylene glycol) (PEG) was prepared. PEG was used to reduce the background adhesion force, and as a spacer to better discriminate between specific and non-specific interactions in the force curves [20]. The functionalized probes after ‘click’ modification were
  • : In order to verify the result of the modification, the probe was ramped over a glass slide with a monolayer of amino-terminated poly(ethylene glycol) (PEG) in isopropanol. The amino groups should form hydrogen bonds with the carboxylic acid group on the probe in the contacting period during ramping
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2014

The surface properties of nanoparticles determine the agglomeration state and the size of the particles under physiological conditions

  • Christoph Bantz,
  • Olga Koshkina,
  • Thomas Lang,
  • Hans-Joachim Galla,
  • C. James Kirkpatrick,
  • Roland H. Stauber and
  • Michael Maskos

Beilstein J. Nanotechnol. 2014, 5, 1774–1786, doi:10.3762/bjnano.5.188

Graphical Abstract
  • (–COOH) terminated poly(ethylene glycol) (PEG, molecular weight ca. 2 kDa) was reacted through a coupling reaction mediated by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) in methanol (PEG@POS-NH2). Finally, the combination of both modification steps was achieved, which yields sterically
PDF
Album
Full Research Paper
Published 15 Oct 2014

Influence of surface-modified maghemite nanoparticles on in vitro survival of human stem cells

  • Michal Babič,
  • Daniel Horák,
  • Lyubov L. Lukash,
  • Tetiana A. Ruban,
  • Yurii N. Kolomiets,
  • Svitlana P. Shpylova and
  • Oksana A. Grypych

Beilstein J. Nanotechnol. 2014, 5, 1732–1737, doi:10.3762/bjnano.5.183

Graphical Abstract
  • ., dextran [18][19] (in Feridex® and Endorem® developed as contrast agents for magnetic resonance imaging, MRI), poly(ethylene glycol) (PEG) [1], poly(N,N-dimethylacrylamide) (PDMAAm) [20], poly(L-lysine) [21][22], protamine sulfate [23], or layer-by-layer polyelectrolyte complexes [24]. The aim of this
PDF
Album
Full Research Paper
Published 08 Oct 2014

Controlling mechanical properties of bio-inspired hydrogels by modulating nano-scale, inter-polymeric junctions

  • Seonki Hong,
  • Hyukjin Lee and
  • Haeshin Lee

Beilstein J. Nanotechnol. 2014, 5, 887–894, doi:10.3762/bjnano.5.101

Graphical Abstract
  • -immobilization [15], facilitating cell adhesion [16], attenuating in vivo toxicity [17], initiating bio-mineralization [18], graphene nano-composites [19], and bio-inspired adhesives [20][21]. In addition to the interface science and engineering, methods to prepare bulk materials such as poly(ethylene glycol
  • ) (PEG) and pluronic hydrogels have been reported [22][23][24][25][26]. However, most previous work utilized catechol–catechol crosslinking by using catechol end-functionalized polymers, which limits the control of important variables in hydrogels such as gelation kinetics and mechanical properties
PDF
Album
Supp Info
Full Research Paper
Published 23 Jun 2014

In vitro toxicity and bioimaging studies of gold nanorods formulations coated with biofunctional thiol-PEG molecules and Pluronic block copolymers

  • Tianxun Gong,
  • Douglas Goh,
  • Malini Olivo and
  • Ken-Tye Yong

Beilstein J. Nanotechnol. 2014, 5, 546–553, doi:10.3762/bjnano.5.64

Graphical Abstract
  • functional thiol-poly(ethylene glycol) (PEG-SH) molecules and Pluronic block copolymers (PEO–PPO–PEO) (see chemical formula of PEG-SH and Pluronic (PEO–PPO–PEO) in Supporting Information File 1, Figure S1) are commonly used to prepare non-ionic polymer encapsulated AuNRs with a stealth property for in vivo
PDF
Album
Supp Info
Full Research Paper
Published 30 Apr 2014

Colloidal lithography for fabricating patterned polymer-brush microstructures

  • Tao Chen,
  • Debby P. Chang,
  • Rainer Jordan and
  • Stefan Zauscher

Beilstein J. Nanotechnol. 2012, 3, 397–403, doi:10.3762/bjnano.3.46

Graphical Abstract
  • a large amount of thiol. Such an approach was first reported by Taylor and co-workers [10], who described a simple CL technique to fabricate substrates with hexagonally patterned dots of protein surrounded by a protein-repellant layer of poly(ethylene glycol) (PEG). In that work, a self-assembled
PDF
Album
Full Research Paper
Published 15 May 2012
Other Beilstein-Institut Open Science Activities