Search results

Search for "poly(lactic acid)" in Full Text gives 29 result(s) in Beilstein Journal of Nanotechnology.

Beyond the shell: exploring polymer–lipid interfaces in core–shell nanofibers to carry hyaluronic acid and β-caryophyllene

  • Aline Tavares da Silva Barreto,
  • Francisco Alexandrino-Júnior,
  • Bráulio Soares Arcanjo,
  • Paulo Henrique de Souza Picciani and
  • Kattya Gyselle de Holanda e Silva

Beilstein J. Nanotechnol. 2025, 16, 2015–2033, doi:10.3762/bjnano.16.139

Graphical Abstract
  • innovative strategies to ensure their compatibility and sustained activity. This study addresses this critical challenge through the rational design and fabrication of hybrid core–shell nanofibers manufactured via coaxial electrospinning. Poly(lactic acid) (PLA) was used as an outer shell providing
  • encapsulated within a PLA shell, highlighting substantial potential for biomedical applications by overcoming key material integration hurdles. Keywords: co-axial nanofibers; electrospinning; hybrid nanosystem; nanofibers; nanoemulsion; poly(lactic acid); Introduction Driven by the significant potential of
  • -caryophyllene (purity ≥80%), fluorescein, poly(lactic acid) (Mw ≈ 93,156 Da), anhydrous chloroform (PA), and PBS tablets (pH 7.2–7.6) were obtained from Sigma-Aldrich (USA). Captex® 300 was kindly provided by ABITEC Corporation (USA). Pharmaceutical-grade hyaluronic acid (95% purity) was purchased from Shandong
PDF
Album
Full Research Paper
Published 12 Nov 2025

Venom-loaded cationic-functionalized poly(lactic acid) nanoparticles for serum production against Tityus serrulatus scorpion

  • Philippe de Castro Mesquita,
  • Karla Samara Rocha Soares,
  • Manoela Torres-Rêgo,
  • Emanuell dos Santos-Silva,
  • Mariana Farias Alves-Silva,
  • Alianda Maira Cornélio,
  • Matheus de Freitas Fernandes-Pedrosa and
  • Arnóbio Antônio da Silva-Júnior

Beilstein J. Nanotechnol. 2025, 16, 1633–1643, doi:10.3762/bjnano.16.115

Graphical Abstract
  • only specific treatment for envenomation is the administration of antivenoms associated with traditional adjuvants. Novel adjuvants are studied to reduce or avoid side effects and potentialize the efficacy of conventional serum. In this study, poly(lactic acid) nanoparticles were functionalized with
  • as a biotechnological approach to immunotherapy against scorpion envenomation. Keywords: cationic nanoparticles; immunoadjuvant; polyethylenimine; poly(lactic acid); Tityus serrulatus; Introduction Accidents caused by scorpion envenoming are recognized as an important public health problem in
  • polymers such as poly(lactic acid) (PLA) has been investigated [13]. The nanoparticles produced using these synthetic polyesters show neutral or negative zeta potential, which limits the loading of negatively charged macromolecules such as proteins, polypeptides, or DNA [14][20]. The surface of
PDF
Album
Full Research Paper
Published 17 Sep 2025

Enhancing the therapeutical potential of metalloantibiotics using nano-based delivery systems

  • Alejandro Llamedo,
  • Marina Cano,
  • Raquel G. Soengas and
  • Francisco J. García-Alonso

Beilstein J. Nanotechnol. 2025, 16, 1350–1366, doi:10.3762/bjnano.16.98

Graphical Abstract
  • example, Gasser and co-workers disclosed the encapsulation of the Ru(II) polypyridyl complexes 18 (Figure 5) in nanoconjugates of poly(lactic acid) (PLA) with varying molecular weights [127]. Nanoprecipitation produced narrowly dispersed nanoparticles with high ruthenium loadings (up to 53%), as confirmed
PDF
Album
Review
Published 15 Aug 2025

Nanocarriers and macrophage interaction: from a potential hurdle to an alternative therapeutic strategy

  • Naths Grazia Sukubo,
  • Paolo Bigini and
  • Annalisa Morelli

Beilstein J. Nanotechnol. 2025, 16, 97–118, doi:10.3762/bjnano.16.10

Graphical Abstract
  • promise in mitigating inflammation and promoting tumoricidal macrophage polarization. For inflammatory diseases like IBD, targeting pro-inflammatory cytokines with siRNA has proven effective. Laroui et al. developed polymeric NPs made of poly(lactic acid)–poly(ethylene glycol) block copolymer (PLA-PEG
PDF
Album
Review
Published 31 Jan 2025

Nanotechnological approaches for efficient N2B delivery: from small-molecule drugs to biopharmaceuticals

  • Selin Akpinar Adscheid,
  • Akif E. Türeli,
  • Nazende Günday-Türeli and
  • Marc Schneider

Beilstein J. Nanotechnol. 2024, 15, 1400–1414, doi:10.3762/bjnano.15.113

Graphical Abstract
  • [77]. In addition to biopolymers, synthetic biodegradable and biocompatible polymers such as poly(lactic acid) (PLA) and poly(lactic-co-glycolic acid) (PLGA), which are approved by the US Food and Drug Administration (FDA) for human administration [78] are relevant options. Extensive testing has been
PDF
Album
Review
Published 12 Nov 2024

Therapeutic effect of F127-folate@PLGA/CHL/IR780 nanoparticles on folate receptor-expressing cancer cells

  • Thi Ngoc Han Pham,
  • Phuong-Thao Dang-Luong,
  • Hong-Phuc Nguyen,
  • Loc Le-Tuan,
  • Xuan Thang Cao,
  • Thanh-Danh Nguyen,
  • Vy Tran Anh and
  • Hieu Vu_Quang

Beilstein J. Nanotechnol. 2024, 15, 954–964, doi:10.3762/bjnano.15.78

Graphical Abstract
  • and diagnosis, leveraging the advantages of PLGA, folate targeting, and the integration of therapeutic and imaging agents. Keywords: cancer; chlorambucil; drug carrier; IR780; PLGA nanoparticle; theragnostic; Introduction Poly(ᴅ,ʟ-lactic-co-glycolic acid) (PLGA), a copolymer of poly(lactic acid
PDF
Album
Supp Info
Full Research Paper
Published 31 Jul 2024

Electrospun polysuccinimide scaffolds containing different salts as potential wound dressing material

  • Veronika Pálos,
  • Krisztina S. Nagy,
  • Rita Pázmány,
  • Krisztina Juriga-Tóth,
  • Bálint Budavári,
  • Judit Domokos,
  • Dóra Szabó,
  • Ákos Zsembery and
  • Angela Jedlovszky-Hajdu

Beilstein J. Nanotechnol. 2024, 15, 781–796, doi:10.3762/bjnano.15.65

Graphical Abstract
  • Polymer mixtures contain at least one component besides the polymer, such as nanoparticles, inorganic salts, or other polymers. These types of polymer mixtures are used for medical purposes; for example, metronidazole/poly(ε-caprolactone) (PCL)/alginate for dental implants or poly(lactic acid
PDF
Album
Supp Info
Full Research Paper
Published 02 Jul 2024

Microneedle-based ocular drug delivery systems – recent advances and challenges

  • Piotr Gadziński,
  • Anna Froelich,
  • Monika Wojtyłko,
  • Antoni Białek,
  • Julia Krysztofiak and
  • Tomasz Osmałek

Beilstein J. Nanotechnol. 2022, 13, 1167–1184, doi:10.3762/bjnano.13.98

Graphical Abstract
  • ], polyvinyl alcohol (PVA) [123], and polymethacrylates [118][124][125]. Among the biodegradable materials, carbohydrates, including maltose [126], trehalose [127], and sucrose [128], are frequently mentioned. Moreover, biodegradable polymers such as poly(lactic acid) (PLA) [129], poly(glycolic acid) (PGA
  • , biodegradable polymers such as poly(lactic acid), poly(glycolic acid), and non-biodegradable polymers, for example, photolithographic epoxy resins are used [148]. The methods used for the production of microneedles include lithographic or laser techniques, casting, and 3D printing, to mention a few. The laser
PDF
Album
Review
Published 24 Oct 2022

Biomimetic chitosan with biocomposite nanomaterials for bone tissue repair and regeneration

  • Se-Kwon Kim,
  • Sesha Subramanian Murugan,
  • Pandurang Appana Dalavi,
  • Sebanti Gupta,
  • Sukumaran Anil,
  • Gi Hun Seong and
  • Jayachandran Venkatesan

Beilstein J. Nanotechnol. 2022, 13, 1051–1067, doi:10.3762/bjnano.13.92

Graphical Abstract
  • that the compressive strength of the 3D-printed samples was 16.32 MPa, with a porosity of 37.1% [124]. Nazeer et al. used 3D-printed poly (lactic acid) with chitosan and hydroxyapatite scaffolds for bone repair applications. The honeycomb and rectilinear pattern of the scaffolds were printed through a
PDF
Review
Published 29 Sep 2022

Effects of drug concentration and PLGA addition on the properties of electrospun ampicillin trihydrate-loaded PLA nanofibers

  • Tuğba Eren Böncü and
  • Nurten Ozdemir

Beilstein J. Nanotechnol. 2022, 13, 245–254, doi:10.3762/bjnano.13.19

Graphical Abstract
  • produce ampicillin trihydrate-loaded poly(lactic acid) (PLA) and PLA/poly(lactic-co-glycolic acid) (PLA/PLGA) polymeric nanofibers via electrospinning using 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) as the solvent for local application in tissue engineering. The effects of ampicillin trihydrate
PDF
Album
Full Research Paper
Published 21 Feb 2022

A comprehensive review on electrospun nanohybrid membranes for wastewater treatment

  • Senuri Kumarage,
  • Imalka Munaweera and
  • Nilwala Kottegoda

Beilstein J. Nanotechnol. 2022, 13, 137–159, doi:10.3762/bjnano.13.10

Graphical Abstract
  • bioactive products. Patel et al. fabricated bioactive electrospun nanocomposite scaffolds of poly(lactic acid) for bone tissue engineering by incorporating cellulose nanocrystals and observed that the nanohybrid has excellent properties in terms of mechanical strength and thermal stability compared to the
PDF
Album
Review
Published 31 Jan 2022

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
PDF
Album
Review
Published 11 Aug 2021

The impact of molecular tumor profiling on the design strategies for targeting myeloid leukemia and EGFR/CD44-positive solid tumors

  • Nikola Geskovski,
  • Nadica Matevska-Geshkovska,
  • Simona Dimchevska Sazdovska,
  • Marija Glavas Dodov,
  • Kristina Mladenovska and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2021, 12, 375–401, doi:10.3762/bjnano.12.31

Graphical Abstract
  • articles regarding the use of EGFR mAbs as a specific targeting motif for polymer NPs such as poly(lactic acid-co-lysine), poly(ethylene glycol-co-caprolactone), an poly(lactic acid-co-glycolic acid) NPs. All of them have shown
PDF
Album
Review
Published 29 Apr 2021

Key for crossing the BBB with nanoparticles: the rational design

  • Sonia M. Lombardo,
  • Marc Schneider,
  • Akif E. Türeli and
  • Nazende Günday Türeli

Beilstein J. Nanotechnol. 2020, 11, 866–883, doi:10.3762/bjnano.11.72

Graphical Abstract
  • polymeric nanoparticles prepared with PBCA and polymers from the poly(ethylene) family such as poly(lactic acid) (PLA) and poly(lactic-co-glycolic acid) (PLGA) [25][26]. Liposomes and other lipidic nanoparticles have also been reported as able to pass the BBB [27], as well as protein-based nanoparticles
PDF
Album
Review
Published 04 Jun 2020

Rational design of block copolymer self-assemblies in photodynamic therapy

  • Maxime Demazeau,
  • Laure Gibot,
  • Anne-Françoise Mingotaud,
  • Patricia Vicendo,
  • Clément Roux and
  • Barbara Lonetti

Beilstein J. Nanotechnol. 2020, 11, 180–212, doi:10.3762/bjnano.11.15

Graphical Abstract
PDF
Album
Review
Published 15 Jan 2020

Ultrasonication-assisted synthesis of CsPbBr3 and Cs4PbBr6 perovskite nanocrystals and their reversible transformation

  • Longshi Rao,
  • Xinrui Ding,
  • Xuewei Du,
  • Guanwei Liang,
  • Yong Tang,
  • Kairui Tang and
  • Jin Z. Zhang

Beilstein J. Nanotechnol. 2019, 10, 666–676, doi:10.3762/bjnano.10.66

Graphical Abstract
  • shape and size are tuned through the control of temperature, reaction time, and composition of the precursors [15][16][17]. Chen et al. demonstrated a facile solvothermal method for preparing CsPbX3 PNCs with adjustable optical properties [18]. Additionally, Li's group reported a poly(lactic acid
PDF
Album
Supp Info
Full Research Paper
Published 06 Mar 2019

Preparation of micro/nanopatterned gelatins crosslinked with genipin for biocompatible dental implants

  • Reika Makita,
  • Tsukasa Akasaka,
  • Seiichi Tamagawa,
  • Yasuhiro Yoshida,
  • Saori Miyata,
  • Hirofumi Miyaji and
  • Tsutomu Sugaya

Beilstein J. Nanotechnol. 2018, 9, 1735–1754, doi:10.3762/bjnano.9.165

Graphical Abstract
  • previously reported [59]. In a previous study, Saos-2 cells on poly (lactic acid) (PLLA) pillars with diameter of 200 nm and height of 900 nm extended numerous filopodia radially and the tips of the filopodia were attached to the top of the pillars [59]. However, the small cell area seen on PLLA pillars was
PDF
Album
Full Research Paper
Published 11 Jun 2018

Atomic-level characterization and cilostazol affinity of poly(lactic acid) nanoparticles conjugated with differentially charged hydrophilic molecules

  • María Francisca Matus,
  • Martín Ludueña,
  • Cristian Vilos,
  • Iván Palomo and
  • Marcelo M. Mariscal

Beilstein J. Nanotechnol. 2018, 9, 1328–1338, doi:10.3762/bjnano.9.126

Graphical Abstract
  • promising field for numerous diseases and represents the forefront of modern medicine. In the present work, full atomistic computer simulations were applied to study poly(lactic acid) (PLA) nanoparticles conjugated with polyethylene glycol (PEG). The formation of this complex system was simulated using the
  • against in vitro and in vivo degradation [7][8][9]. Poly(lactic acid) (PLA) is one of the most commonly used polymers for the synthesis of NPs. PLA is a synthetic biodegradable, compostable and non-toxic polymer derived from renewable resources [10][11][12]. Despite its benefits for different formulations
  • determine the spatial distribution of cilostazol in polymeric NPs and to explore its potential use in this kind of drug delivery system. Experimental Characterization of copolymer structures by all-atom molecular dynamics simulations The poly(lactic acid) core PLA polymer chains were built in three
PDF
Album
Full Research Paper
Published 02 May 2018

Surface functionalization of 3D-printed plastics via initiated chemical vapor deposition

  • Christine Cheng and
  • Malancha Gupta

Beilstein J. Nanotechnol. 2017, 8, 1629–1636, doi:10.3762/bjnano.8.162

Graphical Abstract
  • studied the ability of the initiated chemical vapor deposition (iCVD) process to coat 3D-printed shapes composed of poly(lactic acid) and acrylonitrile butadiene styrene. The thermally insulating properties of 3D-printed plastics pose a challenge to the iCVD process due to large thermal gradients along
  • thickness and therefore the thermal gradients were modest. In contrast to these previous studies, our 3D-printed objects are over 5 mm in thickness and therefore the significant thermal gradients may impact the deposition process. In this study, we printed the 3D objects using both poly(lactic acid) (PLA
PDF
Album
Full Research Paper
Published 08 Aug 2017

Low uptake of silica nanoparticles in Caco-2 intestinal epithelial barriers

  • Dong Ye,
  • Mattia Bramini,
  • Delyan R. Hristov,
  • Sha Wan,
  • Anna Salvati,
  • Christoffer Åberg and
  • Kenneth A. Dawson

Beilstein J. Nanotechnol. 2017, 8, 1396–1406, doi:10.3762/bjnano.8.141

Graphical Abstract
  • ][33] and poly(lactic-co-glycolic acid) and poly(lactic acid) with attached poly(ethylene glycol) [31][32] nanoparticles and to be temperature-dependent [29][30][31][32][33]. Despite uptake, transport across differentiated Caco-2 barriers (grown for 21 days) has been shown to be very limited for
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2017

Nano- and microstructured materials for in vitro studies of the physiology of vascular cells

  • Alexandra M. Greiner,
  • Adria Sales,
  • Hao Chen,
  • Sarah A. Biela,
  • Dieter Kaufmann and
  • Ralf Kemkemer

Beilstein J. Nanotechnol. 2016, 7, 1620–1641, doi:10.3762/bjnano.7.155

Graphical Abstract
  • for vascular cell studies are poly(dimethylsiloxane) (PDMS) [6][61][103][104][105][106], poly(ethylene glycol) (PEG)-derived polymers [5][87][98][107][108][109][110][111][112][113] poly(acrylamide) (PAA) [50][114][115][116] and poly(lactic acid) (PLA) [117][118]. Alternative materials used for micro
  • molecules is disadvantegous too. Using more advanced chemistry for immobilizing the molecules of interest in a controlled fashion [145][146][147][148]. Typical molecules used for non-specific surface coatings are poly-L-Lysine (PLL) and poly(lactic acid) (PLA), both interact unspecifically with cells
PDF
Album
Review
Published 08 Nov 2016

Manufacturing and investigation of physical properties of polyacrylonitrile nanofibre composites with SiO2, TiO2 and Bi2O3 nanoparticles

  • Tomasz Tański,
  • Wiktor Matysiak and
  • Barbara Hajduk

Beilstein J. Nanotechnol. 2016, 7, 1141–1155, doi:10.3762/bjnano.7.106

Graphical Abstract
  • prior modification of the particle surface) significantly improves the mechanical properties and thermal strength of the resulting composite relative to the pure polymer. In addition, polymer composites (based on, inter alia, poly(ether ether ketone) (PEEK), poly(methyl methacrylate) (PMMA), poly(lactic
  • acid) (PLA), poly(butylene succinate) (PBS), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), poly(vinylidene difluoride) (PVBF), poly(vinylpyrrolidone) PVP, poly(acrylonitrile) (PAN)) reinforced with particles of SiO2, TiO2 and Bi2O3, particularly in thin layers, are very attractive because of
PDF
Album
Full Research Paper
Published 05 Aug 2016

Fabrication and characterization of novel multilayered structures by stereocomplexion of poly(D-lactic acid)/poly(L-lactic acid) and self-assembly of polyelectrolytes

  • Elena Dellacasa,
  • Li Zhao,
  • Gesheng Yang,
  • Laura Pastorino and
  • Gleb B. Sukhorukov

Beilstein J. Nanotechnol. 2016, 7, 81–90, doi:10.3762/bjnano.7.10

Graphical Abstract
  • between the (PDLA/PLLA)n stereocomplex and the cores with and without the polymeric (PSS/PAH)n/PLL multilayer precursor (PEM). Nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC) were used to characterize the chemical composition and molecular weight of poly(lactic acid) polymers
  • aliphatic polyester poly(lactic acid) (PLA) has been widely used in the biomedical field due to its extraordinary biocompatibility, biodegradability and mechanical properties [19][30][31][32][33]. Lactic acid, which is the degraded product from PLA, is fully biocompatible in human bodies, and therefore
  • °, and 18.1° and are the typical peaks of poly(lactic acid). The diffraction peaks of the PDLA/PLLA film are at θ = 12° and 22.1° (which is an overlap of the peaks at 20.8° and 24.1°). The peaks of the microcapsules situate at θ = 12°, 20.8° and 24.1°, which are uniquely assigned to PLA stereocomplex
PDF
Album
Full Research Paper
Published 21 Jan 2016

Nanofibers for drug delivery – incorporation and release of model molecules, influence of molecular weight and polymer structure

  • Jakub Hrib,
  • Jakub Sirc,
  • Radka Hobzova,
  • Zuzana Hampejsova,
  • Zuzana Bosakova,
  • Marcela Munzarova and
  • Jiri Michalek

Beilstein J. Nanotechnol. 2015, 6, 1939–1945, doi:10.3762/bjnano.6.198

Graphical Abstract
  • , solvent or tablet excipient. Apart from these applications the PEG has significant effect on the drug release. It has been shown that addition of PEG molecules is an efficient way to modify the release of hydrophobic paclitaxel from poly(lactic acid-co-glycolic acid) matrix [25] or proteins from lipidic
PDF
Album
Full Research Paper
Published 25 Sep 2015

Synthesis, characterization and in vitro biocompatibility study of Au/TMC/Fe3O4 nanocomposites as a promising, nontoxic system for biomedical applications

  • Hanieh Shirazi,
  • Maryam Daneshpour,
  • Soheila Kashanian and
  • Kobra Omidfar

Beilstein J. Nanotechnol. 2015, 6, 1677–1689, doi:10.3762/bjnano.6.170

Graphical Abstract
  • interactions with cells and proteins [12]. Biodegradable polymers that are generally used for coating magnetic nanoparticles include poly(ethylene glycol) (PEG), poly(vinyl alcohol) (PVA), polyethyleneimine (PEI), poly(D,L-lactide), poly(lactic acid), poly(D,L-glycolide), poly(lactide-co-glycolide
PDF
Album
Full Research Paper
Published 03 Aug 2015
Other Beilstein-Institut Open Science Activities