Search results

Search for "polymeric materials" in Full Text gives 31 result(s) in Beilstein Journal of Nanotechnology.

Using natural language processing techniques to inform research on nanotechnology

  • Nastassja A. Lewinski and
  • Bridget T. McInnes

Beilstein J. Nanotechnol. 2015, 6, 1439–1449, doi:10.3762/bjnano.6.149

Graphical Abstract
  • Interactions (NBI) knowledge base. The NBI includes data on the mortality, delayed development and morphological malformations of embryonic zebrafish due to the toxicity of various nanomaterials including metal nanoparticles, dendrimer, metal oxide and polymeric materials [40]. Java Applets were used to
PDF
Review
Published 01 Jul 2015

Protein corona – from molecular adsorption to physiological complexity

  • Lennart Treuel,
  • Dominic Docter,
  • Michael Maskos and
  • Roland H. Stauber

Beilstein J. Nanotechnol. 2015, 6, 857–873, doi:10.3762/bjnano.6.88

Graphical Abstract
  • studies focused on polymeric materials of synthetic [134][135] or natural origin [132][136][137][138][139][140][141]. An interesting result of these studies was that poly(ethylene glycol) (PEG) coatings reportedly increased the blood circulation time of intravenously administered NPs [142]. This finding
PDF
Album
Review
Published 30 Mar 2015

Filling of carbon nanotubes and nanofibres

  • Reece D. Gately and
  • Marc in het Panhuis

Beilstein J. Nanotechnol. 2015, 6, 508–516, doi:10.3762/bjnano.6.53

Graphical Abstract
  • the following properties: (1) selective drug delivery using nanostructures, which is important for the development of nano-sized needles or patches for the localised treatment of diseases; (2) autonomic healing of polymeric materials, such as tough hydrogels, which is important for load-bearing
PDF
Album
Review
Published 19 Feb 2015

The surface properties of nanoparticles determine the agglomeration state and the size of the particles under physiological conditions

  • Christoph Bantz,
  • Olga Koshkina,
  • Thomas Lang,
  • Hans-Joachim Galla,
  • C. James Kirkpatrick,
  • Roland H. Stauber and
  • Michael Maskos

Beilstein J. Nanotechnol. 2014, 5, 1774–1786, doi:10.3762/bjnano.5.188

Graphical Abstract
  • preparation artifacts. During all of the modification steps of the POS-NH2 particles, organic or polymeric materials were introduced. Due to the lower contrast of carbon atoms compared to silicon, none of these modifications can be visualized by TEM, at least without the application of contrast agents. As
PDF
Album
Full Research Paper
Published 15 Oct 2014

Antimicrobial nanospheres thin coatings prepared by advanced pulsed laser technique

  • Alina Maria Holban,
  • Valentina Grumezescu,
  • Alexandru Mihai Grumezescu,
  • Bogdan Ştefan Vasile,
  • Roxana Truşcă,
  • Rodica Cristescu,
  • Gabriel Socol and
  • Florin Iordache

Beilstein J. Nanotechnol. 2014, 5, 872–880, doi:10.3762/bjnano.5.99

Graphical Abstract
  • and coatings of soft materials, organic and polymeric materials, and complex molecules [19][20][21][22][23][24][25][26][27][28][29][30][31][32][33][34][35]. Furthermore, the compatibility of MAPLE processing has been demonstrated for inorganic systems such as TiO2 [36], and Fe3O4 nanoparticle-based
PDF
Album
Full Research Paper
Published 18 Jun 2014

Self-assembled monolayers and titanium dioxide: From surface patterning to potential applications

  • Yaron Paz

Beilstein J. Nanotechnol. 2011, 2, 845–861, doi:10.3762/bjnano.2.94

Graphical Abstract
PDF
Album
Review
Published 20 Dec 2011
Other Beilstein-Institut Open Science Activities