Search results

Search for "spectromicroscopy" in Full Text gives 8 result(s) in Beilstein Journal of Nanotechnology.

Plasma fluorination of vertically aligned carbon nanotubes: functionalization and thermal stability

  • Claudia Struzzi,
  • Mattia Scardamaglia,
  • Axel Hemberg,
  • Luca Petaccia,
  • Jean-François Colomer,
  • Rony Snyders and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2015, 6, 2263–2271, doi:10.3762/bjnano.6.232

Graphical Abstract
  • for the evaluation of the spatial distribution of fluorine atoms, while X-ray photoelectron spectromicroscopy measurements indicated that the grafting occurred mainly up to a few µm under the tips of the nanotubes without damaging the carbon structure [20]. In that case, the Ar/F2 mixture
PDF
Album
Supp Info
Full Research Paper
Published 01 Dec 2015

Atomic scale interface design and characterisation

  • Carla Bittencourt,
  • Chris Ewels and
  • Arkady V. Krasheninnikov

Beilstein J. Nanotechnol. 2015, 6, 1708–1711, doi:10.3762/bjnano.6.174

Graphical Abstract
  • , France Department of Applied Physics, Aalto University, Finland Institute of Ion Beam Physics and Materials Research, Helmholtz Zentrum Dresden-Rossendorf, Germany 10.3762/bjnano.6.174 Keywords: carbon; first-principles simulations; interface; nanomaterials; nanoscale; oxides; spectromicroscopy; While
PDF
Editorial
Published 10 Aug 2015

Overview of nanoscale NEXAFS performed with soft X-ray microscopes

  • Peter Guttmann and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2015, 6, 595–604, doi:10.3762/bjnano.6.61

Graphical Abstract
  • spectromicroscopy having the capability of offering both spatial and chemical/physical information opens avenues for detailed characterization of nanostructures. Other spatially resolved techniques or spectromicroscopy as, e.g., electron energy loss spectroscopy (EELS) [14] have been chosen to study individual
  • nanostructures/nanoparticles. By using monochromatic, aberration-corrected transmission electron microscopes (TEM) operating at low voltages spectromicroscopy of isolated nanostructures can be performed. Here, energy resolutions comparable to classical synchrotron based spectroscopy techniques can be achieved. A
  • transmitted X-ray photons. No low efficiency optic is upstream of the sample. Therefore, the radiation load to the sample is minimized. The pixel by pixel data format can be easily used for spectromicroscopy applications. In the STXM, the contrast transfer function (CTF) follows that one of an incoherent
PDF
Album
Review
Published 27 Feb 2015

Overview about the localization of nanoparticles in tissue and cellular context by different imaging techniques

  • Anja Ostrowski,
  • Daniel Nordmeyer,
  • Alexander Boreham,
  • Cornelia Holzhausen,
  • Lars Mundhenk,
  • Christina Graf,
  • Martina C. Meinke,
  • Annika Vogt,
  • Sabrina Hadam,
  • Jürgen Lademann,
  • Eckart Rühl,
  • Ulrike Alexiev and
  • Achim D. Gruber

Beilstein J. Nanotechnol. 2015, 6, 263–280, doi:10.3762/bjnano.6.25

Graphical Abstract
  • ]. Furthermore, the accessibility of biological samples for CARS is also limited due to high laser powers that might destroy the sample as well as a high concentration of certain molecules that are required [141]. Soft X-ray microscopy and spectromicroscopy Soft X-ray microscopy techniques combine high spatial
  • in the soft regime and even tomographic analyses of biological samples of up to 10 µm thickness are possible [143]. Besides high contrast and penetration depth, synchrotron radiation in the soft X-ray regime may be tuned for spectromicroscopy and chemical identification of the X-ray absorbing
  • elements in biological samples [143]. Soft X-ray spectromicroscopy techniques have been used for probing protein interactions with model biomaterial surface [142] and various quantitative analyses. At the C 1s edge the detection limit of this technique is in the part per thousand range [142] with a spatial
PDF
Album
Review
Published 23 Jan 2015

Cathode lens spectromicroscopy: methodology and applications

  • T. O. Menteş,
  • G. Zamborlini,
  • A. Sala and
  • A. Locatelli

Beilstein J. Nanotechnol. 2014, 5, 1873–1886, doi:10.3762/bjnano.5.198

Graphical Abstract
  • 10.3762/bjnano.5.198 Abstract The implementation of imaging techniques with low-energy electrons at synchrotron laboratories allowed for significant advancement in the field of spectromicroscopy. The spectroscopic photoemission and low energy electron microscope, SPELEEM, is a notable example. We
  • , which has pioneered cathode lens spectromicroscopy measurements at synchrotrons during the mid-1990’s [25]. The SPELEEM combines LEEM and XPEEM with energy filter in the same setup: LEEM operation uses an LaB6 electron gun and dedicated illumination optics with three condenser lenses, which can deliver
  • assign the term to the formation of regular structures. SPELEEM methods perfectly lend themselves to studies of self-organization phenomena, particularly in the field of nanomagnetism. In a nutshell, LEEM is used to monitor the growth process in real time at high temperatures; spectromicroscopy with
PDF
Album
Review
Published 27 Oct 2014

Characterization of electroforming-free titanium dioxide memristors

  • John Paul Strachan,
  • J. Joshua Yang,
  • L. A. Montoro,
  • C. A. Ospina,
  • A. J. Ramirez,
  • A. L. D. Kilcoyne,
  • Gilberto Medeiros-Ribeiro and
  • R. Stanley Williams

Beilstein J. Nanotechnol. 2013, 4, 467–473, doi:10.3762/bjnano.4.55

Graphical Abstract
  • spectromicroscopy and transmission electron microscopy (TEM), both techniques previously employed in observing the formation of a bulk conducting (Magnéli) phase. These techniques are applied to both the standard (electroformed) and non-stoichiometric (forming-free) devices in order to compare the material changes
  • in each of them. Sample preparation and resistance switching MIM crossbar devices were fabricated on a silicon/silicon-nitride substrate. In some areas, the underlying Si was etched to form free-standing membranes allowing transmission characterization by X-ray absorption spectromicroscopy and
  • regained, even after going to the high conductance state (ON). These three properties can be used to define a so called “forming-free” device. Results and Discussion Device characterization by X-ray spectromicroscopy To probe any switching-induced material changes in the devices, characterization was
PDF
Album
Full Research Paper
Published 07 Aug 2013

Towards atomic resolution in sodium titanate nanotubes using near-edge X-ray-absorption fine-structure spectromicroscopy combined with multichannel multiple-scattering calculations

  • Carla Bittencourt,
  • Peter Krüger,
  • Maureen J. Lagos,
  • Xiaoxing Ke,
  • Gustaaf Van Tendeloo,
  • Chris Ewels,
  • Polona Umek and
  • Peter Guttmann

Beilstein J. Nanotechnol. 2012, 3, 789–797, doi:10.3762/bjnano.3.88

Graphical Abstract
  • ][22][23][24][25][26][27][28][29]. All these applications require a deep understanding of the electronic structure of the material. In addition to spatial resolution, the NEXAFS–TXM offers higher-energy resolution and lower-damage yield when compared to other advanced spectromicroscopy techniques, such
PDF
Album
Supp Info
Full Research Paper
Published 23 Nov 2012

X-ray absorption spectroscopy by full-field X-ray microscopy of a thin graphite flake: Imaging and electronic structure via the carbon K-edge

  • Carla Bittencourt,
  • Adam P. Hitchock,
  • Xiaoxing Ke,
  • Gustaaf Van Tendeloo,
  • Chris P. Ewels and
  • Peter Guttmann

Beilstein J. Nanotechnol. 2012, 3, 345–350, doi:10.3762/bjnano.3.39

Graphical Abstract
  • . Deviation from the expected signal intensity can be associated with nonplanarity, structural defects, etc. [12]. Here we use NEXAFS spectromicroscopy, performed with the Helmholtz Zentrum Berlin (HZB) full-field transmission X-ray microscope (TXM) installed at the electron storage ring BESSY II [19], to
PDF
Album
Supp Info
Letter
Published 25 Apr 2012
Other Beilstein-Institut Open Science Activities