Search results

Search for "superoleophobicity" in Full Text gives 4 result(s) in Beilstein Journal of Nanotechnology.

Nanostructured and oriented metal–organic framework films enabling extreme surface wetting properties

  • Andre Mähringer,
  • Julian M. Rotter and
  • Dana D. Medina

Beilstein J. Nanotechnol. 2019, 10, 1994–2003, doi:10.3762/bjnano.10.196

Graphical Abstract
  • measured underwater OCAs for the nanostructured Ni-CAT-1 and Co-CAT-1 films. The employed liquids are dichloromethane (DCM), dichloroethane (DCE), chloroform (CHCl3) and chlorobenzene (PhCl). For all the tested liquids,a superoleophobicity is observed with underwater OCAs > 150°. A) A 30° tilted SEM top
PDF
Album
Supp Info
Full Research Paper
Published 09 Oct 2019

Interface conditions of roughness-induced superoleophilic and superoleophobic surfaces immersed in hexadecane and ethylene glycol

  • Yifan Li,
  • Yunlu Pan and
  • Xuezeng Zhao

Beilstein J. Nanotechnol. 2017, 8, 2504–2514, doi:10.3762/bjnano.8.250

Graphical Abstract
  • , hydrophobic, oleophilic and oleophobic surfaces, and there is no data for superoleophilic and superoleophobic surfaces. In superoleophobicity, the values of the roughness parameters are mostly larger than those of surfaces with hydrophobicity/oleophobicity. As oils are widely used as lubricants and antifreeze
PDF
Album
Full Research Paper
Published 27 Nov 2017

Surface roughness rather than surface chemistry essentially affects insect adhesion

  • Matt W. England,
  • Tomoya Sato,
  • Makoto Yagihashi,
  • Atsushi Hozumi,
  • Stanislav N. Gorb and
  • Elena V. Gorb

Beilstein J. Nanotechnol. 2016, 7, 1471–1479, doi:10.3762/bjnano.7.139

Graphical Abstract
  • attachment of the beetles. Surface roughness was found to be the dominant factor, strongly affecting the attachment ability of the beetles. Keywords: insect attachment; superhydrophilicity; superhydrophobicity; superoleophobicity; surface structures; Introduction The development of functional coatings that
  • artificially mimic the properties of surfaces found in nature [1][2][3][4] to produce exceptional wetting/dewetting properties, such as superhydrophobicity, superhydrophilicity, and superoleophobicity (more commonly known as superamniphobicity or superomniphobicity), has been a major topic for research over
  • commercially available superhydrophobic coating system, which was also used to prepare a rough superhydrophilic surface, by subjecting it to vacuum UV (VUV) light treatment. A superomniphobic surface (defined here as a surface exhibiting both superhydrophobicity and superoleophobicity) was created using candle
PDF
Album
Full Research Paper
Published 18 Oct 2016

Biomimetics inspired surfaces for drag reduction and oleophobicity/philicity

  • Bharat Bhushan

Beilstein J. Nanotechnol. 2011, 2, 66–84, doi:10.3762/bjnano.2.9

Graphical Abstract
  • behavior of oil droplets on various superoleophobic surfaces created in the lab. Keywords: aquatic animals; biomimetics; drag; lotus plants; shark skin; superhydrophobicity; superoleophobicity; Introduction Biologically inspired design, adaptation, or derivation from nature is referred to as ‘biomimetics
  • superoleophobic, self-cleaning, and drag reduction surfaces A model surface for superoleophobicity and self-cleaning is provided by fish which are known to be well protected from contamination by oil pollution although they are wetted by water [15][17]. Fish scales have a hierarchical structure consisting of
  • ][43][44] and experimental studies [33][45][46][47] suggest that the presence of nanobubbles at the solid-liquid interface is responsible for boundary slip on hydrophobic surfaces. Roughness-induced superoleophobicity The surface tension of oil and organic liquids is lower than that of water, so to
PDF
Album
Review
Published 01 Feb 2011
Other Beilstein-Institut Open Science Activities