Search results

Search for "therapy" in Full Text gives 188 result(s) in Beilstein Journal of Nanotechnology.

Classification and application of metal-based nanoantioxidants in medicine and healthcare

  • Nguyen Nhat Nam,
  • Nguyen Khoi Song Tran,
  • Tan Tai Nguyen,
  • Nguyen Ngoc Trai,
  • Nguyen Phuong Thuy,
  • Hoang Dang Khoa Do,
  • Nhu Hoa Thi Tran and
  • Kieu The Loan Trinh

Beilstein J. Nanotechnol. 2024, 15, 396–415, doi:10.3762/bjnano.15.36

Graphical Abstract
  • enhancing SOD, GPx, and CAT activities [166]. Second, nanoantioxidants can be used to support cancer therapies such as photodynamic therapy (PDT) and photothermal therapy (PTT) [167]. In this strategy, nanomaterials with antioxidant activities enhance PDT and PTT efficacy by reducing hypoxia in the tumor
  • , Kharlamov et al. investigated 180 patients diagnosed with coronary artery disease (CAD). Their findings unveiled a notable regression of coronary atherosclerosis associated with plasmonic photothermal therapy using silica–gold NPs (SiO2-AuNPs) [177]. Metal-based NPs exhibit the ability to scavenge free
PDF
Album
Review
Published 12 Apr 2024

Nanomedicines against Chagas disease: a critical review

  • Maria Jose Morilla,
  • Kajal Ghosal and
  • Eder Lilia Romero

Beilstein J. Nanotechnol. 2024, 15, 333–349, doi:10.3762/bjnano.15.30

Graphical Abstract
  • skeletal tissue, plasma creatine kinase, and tissue leukocyte infiltration) and trypanocidal effects (reduction of parasitemia) in an acute murine model [79]. A complementary use of Theracurmin® with BNZ therapy is suggested. Intravenous polycaprolactone Nps loaded with ursolic acid (UR-PCL), a natural
  • , Pfizer-BioNTech COVID-19 in 2021 [99] and Moderna COVID-19 Vaccine in 2022 [100], after the approval in 2018 of Onpattro (Patisiran) [101], the first gene therapy based on lipid nanoparticles containing RNA interference, for the treatment of hereditary transthyretin-mediated amyloidosis. Vaccines made of
PDF
Album
Review
Published 27 Mar 2024
Graphical Abstract
  • microenvironment (TME) prone to hypoxic conditions [46]. Insufficient oxygen reduces ROS generation, which decreases the efficacy of oxygen-dependent therapies, such as photodynamic therapy (PDT), chemodynamic therapy (CDT), and radiation therapy. The information derived from the positive contribution of the
PDF
Album
Supp Info
Full Research Paper
Published 12 Mar 2024

Vinorelbine-loaded multifunctional magnetic nanoparticles as anticancer drug delivery systems: synthesis, characterization, and in vitro release study

  • Zeynep Özcan and
  • Afife Binnaz Hazar Yoruç

Beilstein J. Nanotechnol. 2024, 15, 256–269, doi:10.3762/bjnano.15.24

Graphical Abstract
  • photothermal therapy on a single platform has been developed in the form of vinorelbine-loaded polydopamine-coated iron oxide nanoparticles. Vinorelbine (VNB) is loaded on the surface of iron oxide nanoparticles produced by a solvothermal technique after coating with polydopamine (PDA) with varying weight
  • cancer therapy agent, is included in the nanocomposite structure, and in vitro drug release studies under different pH conditions (pH 5.5 and 7.4) and photothermal activity at 808 nm NIR laser irradiation are investigated. The comprehensive integration of precise multifunctional nanoparticles design
  • passive targeting and offer multimodal tumor therapy. In recent years, the use of nanotechnology-based cancer drugs has emerged as a promising alternative treatment approach. Utilizing various nanostructures as specific vehicles for drug delivery enhances efficacy and pharmacokinetic properties of
PDF
Album
Full Research Paper
Published 28 Feb 2024

Nanocarrier systems loaded with IR780, iron oxide nanoparticles and chlorambucil for cancer theragnostics

  • Phuong-Thao Dang-Luong,
  • Hong-Phuc Nguyen,
  • Loc Le-Tuan,
  • Xuan-Thang Cao,
  • Vy Tran-Anh and
  • Hieu Vu Quang

Beilstein J. Nanotechnol. 2024, 15, 180–189, doi:10.3762/bjnano.15.17

Graphical Abstract
  • nowadays, since it enables both diagnosis and therapy at the same time while only using one carrier platform. Therefore, formulating a nanocarrier system that could serve as theragnostic agent by using simple techniques would be an advantage during production. In this project, we aimed to develop a
  • and IR783 are also promising diagnostic choices. Encapsulation of IR780 in nanoparticles can be used for imaging and photothermal, photodynamic, and combinatorial cancer therapies [20][21][22]. IR780 is also utilized in PEG-PLA nanoparticles for photodynamic therapy of human breast cancer cells [23
  • diagnoses, including tumor-targeted drug delivery, hyperthermia, photodynamic therapy, and imaging. Nanomedicines can be made from a variety of inert, biodegradable, and in vivo biocompatible materials. Poly(lactic-co-glycolic acid) is one of the most biodegradable and biocompatible copolymers owing to its
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2024

Berberine-loaded polylactic acid nanofiber scaffold as a drug delivery system: The relationship between chemical characteristics, drug-release behavior, and antibacterial efficiency

  • Le Thi Le,
  • Hue Thi Nguyen,
  • Liem Thanh Nguyen,
  • Huy Quang Tran and
  • Thuy Thi Thu Nguyen

Beilstein J. Nanotechnol. 2024, 15, 71–82, doi:10.3762/bjnano.15.7

Graphical Abstract
  • , nanofiber scaffolds can act as a multifunctional tool in medical treatments, combining drug release for disease therapy, cell proliferation, wound healing, and antimicrobial effect [21][22][23][24][25]. Nanofibers of PLA functionalized with laponite (LAP)/amoxicillin (AMX) prolonged the drug release up to
  • treatment of bone defects [21]. In dentistry, anti-infective nanofiber-based drug-release systems have been investigated for periodontal disease control, endodontic therapy, cariogenic microorganism control, and tissue reconstruction [25]. Due to the controlled drug release, BBR-loaded nanofiber scaffolds
PDF
Album
Supp Info
Full Research Paper
Published 12 Jan 2024

Curcumin-loaded nanostructured systems for treatment of leishmaniasis: a review

  • Douglas Dourado,
  • Thayse Silva Medeiros,
  • Éverton do Nascimento Alencar,
  • Edijane Matos Sales and
  • Fábio Rocha Formiga

Beilstein J. Nanotechnol. 2024, 15, 37–50, doi:10.3762/bjnano.15.4

Graphical Abstract
  • infected with L. donovani. Artemisinin-NPs reduced the number of ex vivo infected macrophages and the intracellular infection of Leishmania donovani amastigotes (IC50 of 6.0 ± 1.4 µg/mL and 5.1 ± 0.9 µg/mL, respectively). Artemisinin-NPs showed better efficacy than free artemisinin after therapy in a mouse
  • combination therapy. The authors functionalized the surface of PLGA-NPs with Eudragit L30D, a polymer that provides pH-dependent drug release and significantly improved targeted action, thus increasing the efficacy of the drug [45]. Curc-E-PLGA-NPs showed spherical morphology, with a hydrodynamic mean
  • reactive oxygen/nitrogen metabolites, (ii) increased phagocytic activity, and (iii) increased lymphocyte proliferation [45]. Furthermore, curc-E-PLGA-NPs proved to be effective as an adjuvant in the therapy against leishmaniasis. Like curc, other leishmanicidal drugs have been encapsulated into polymeric
PDF
Album
Review
Published 04 Jan 2024

Nanotechnological approaches in the treatment of schistosomiasis: an overview

  • Lucas Carvalho,
  • Michelle Sarcinelli and
  • Beatriz Patrício

Beilstein J. Nanotechnol. 2024, 15, 13–25, doi:10.3762/bjnano.15.2

Graphical Abstract
  • (Pilocarpus microphyllus), which has known activity against adult, young, and egg forms of Schistosoma mansoni [57]. Since this is an apolar molecule with poor solubility, the author proposed a nanosystem using liposomes to make this molecule more useful in schistosomiasis therapy. The results showed that
PDF
Album
Supp Info
Review
Published 03 Jan 2024

Curcumin-loaded albumin submicron particles with potential as a cancer therapy: an in vitro study

  • Nittiya Suwannasom,
  • Netsai Sriaksorn,
  • Chutamas Thepmalee,
  • Krissana Khoothiam,
  • Ausanai Prapan,
  • Hans Bäumler and
  • Chonthida Thephinlap

Beilstein J. Nanotechnol. 2023, 14, 1127–1140, doi:10.3762/bjnano.14.93

Graphical Abstract
  • to confirm the uptake of CUR-HSA-MPs by cancer cells. Our studies revealed that HSA-MPs are potentially promising vehicles for increasing the solubility and bioavailability of CUR. Keywords: albumin submicron particles; cancer therapy; curcumin; drug delivery; Introduction Curcumin (CUR) is a
  • into cancer cells, making them a promising option for cancer therapy. In addition, the surface modification of microparticles using substances such as antibodies and polymers suggests the potential for enhanced uptake, as previously demonstrated [55][56]. Nevertheless, further research should explore
PDF
Album
Supp Info
Full Research Paper
Published 21 Nov 2023

Nanoarchitectonics of photothermal materials to enhance the sensitivity of lateral flow assays

  • Elangovan Sarathkumar,
  • Rajasekharan S. Anjana and
  • Ramapurath S. Jayasree

Beilstein J. Nanotechnol. 2023, 14, 988–1003, doi:10.3762/bjnano.14.82

Graphical Abstract
  • change [20][21]. Generally, photothermal nanomaterials are being used in cancer therapy, removal of bacterial biofilms, and sensing applications [22][23][24]. Photothermal nanomaterials produce heat in response to the irradiation of photons at a particular wavelength [23]. Similarly, when plasmonic
  • particle size from 50 to 4.98 nm. In another study, the size-dependent photothermal conversion efficiency of platinum nanomaterials was studied by Depciuch et al. for cancer therapy. Spherical platinum nanoparticles with diameters of 2 and 80 nm were studied regarding the photothermal activity in colon
  • (nanocages, nanorods, and nanohexapods) for photothermal therapy. All three nanostructures exhibited NIR absorption and could convert light into heat, with the gold nanohexapods having the highest efficiency [66] (Figure 6F,G). Branched gold nanostructures (Figure 6D,E) showed higher photothermal activity
PDF
Album
Review
Published 04 Oct 2023

Fragmentation of metal(II) bis(acetylacetonate) complexes induced by slow electrons

  • Janina Kopyra and
  • Hassan Abdoul-Carime

Beilstein J. Nanotechnol. 2023, 14, 980–987, doi:10.3762/bjnano.14.81

Graphical Abstract
  • beams), in plasma applications, or possibly in radiation therapy as radiosensitizers. Experimental We performed electron collision experiments with several metal acetylacetonate compounds, ML2, in a crossed-beam arrangement. According to the description given in [16][17][29], this arrangement consists
PDF
Album
Full Research Paper
Published 26 Sep 2023

Antibody-conjugated nanoparticles for target-specific drug delivery of chemotherapeutics

  • Mamta Kumari,
  • Amitabha Acharya and
  • Praveen Thaggikuppe Krishnamurthy

Beilstein J. Nanotechnol. 2023, 14, 912–926, doi:10.3762/bjnano.14.75

Graphical Abstract
  • higher binding affinity and specificity, mAbs have received a lot of attention for the detection of selective cancer biomarkers and also for the treatment of various types of cancer. Antibody-conjugated nanoparticles (ACNPs) are an effective targeted therapy for the efficient delivery of
  • -directed enzyme prodrug therapy, small molecule drug conjugates, and others are being investigated [2][3]. Targeted delivery with nanoparticles (NPs) has received a lot of attention because it reduces toxicity while also providing good drug compatibility and loadability. Furthermore, NPs increase drug
  • potential and can be effectively used as imaging/therapeutic agents (Table 1). In some cases, ACNPs provide opportunities for image-guided therapy with overall theranostic applications. The NP-mediated targeted delivery ultimately provides advanced diagnostic and therapeutic options for early diagnosis and
PDF
Album
Review
Published 04 Sep 2023

Green SPIONs as a novel highly selective treatment for leishmaniasis: an in vitro study against Leishmania amazonensis intracellular amastigotes

  • Brunno R. F. Verçoza,
  • Robson R. Bernardo,
  • Luiz Augusto S. de Oliveira and
  • Juliany C. F. Rodrigues

Beilstein J. Nanotechnol. 2023, 14, 893–903, doi:10.3762/bjnano.14.73

Graphical Abstract
  • exhibit theranostic properties, that is, they can be used simultaneously for diagnosis and therapy. Thus, SPIONs have emerged as one of the best options for the development of new therapeutic methods. SPIONs offer several features such as good biocompatibility, degradability under moderate acid conditions
PDF
Album
Full Research Paper
Published 30 Aug 2023

Nanoarchitectonics to entrap living cells in silica-based systems: encapsulations with yolk–shell and sepiolite nanomaterials

  • Celia Martín-Morales,
  • Jorge Fernández-Méndez,
  • Pilar Aranda and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2023, 14, 522–534, doi:10.3762/bjnano.14.43

Graphical Abstract
  • confer a shell structure to the unicellular organisms to improve their inherent properties and functions. In fact, the so-called “cellular shellization” has been proposed to obtain a cell surface allowing for applications in advanced technologies and biomedicine including cell delivery and cell therapy
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2023

Microneedle patches – the future of drug delivery and vaccination?

  • Zahra Faraji Rad,
  • Philip D. Prewett and
  • Graham J. Davies

Beilstein J. Nanotechnol. 2023, 14, 494–495, doi:10.3762/bjnano.14.40

Graphical Abstract
  • . Hypodermic syringe injections are, of course, ubiquitous in modern medicine for drug therapy and vaccination, where oral administration is either not desirable or not possible. Delivery may be intravenous, intramuscular or percutaneous. Hypodermic needles of various dimensions are also used to extract venous
PDF
Editorial
Published 14 Apr 2023

Specific absorption rate of randomly oriented magnetic nanoparticles in a static magnetic field

  • Ruslan A. Rytov and
  • Nikolai A. Usov

Beilstein J. Nanotechnol. 2023, 14, 485–493, doi:10.3762/bjnano.14.39

Graphical Abstract
  • hyperthermia; magnetic nanoparticles; magnetic particle imaging; specific absorption rate; static magnetic field; Introduction Magnetic nanoparticles, mainly iron oxides, are promising materials for the diagnosis and therapy of oncological diseases [1][2][3]. Important fields of application of magnetic
  • environment, except for a certain area near the field-free point (FFP). This will allow one to localize the heat release in the tumor area with millimeter accuracy. The search for optimal assemblies for joint MH-MPI therapy is an urgent task in this research area. Experimental measurements of dynamic
  • therapy since, in this case, the maximum heat release is concentrated in a well-localized region near the FFP. Also, it has been found that for nanoparticles of larger diameters, D ≥ 30 nm, the change in the assembly SAR with an increase in the dc magnetic field has a nonmonotonic character. Namely, in
PDF
Album
Full Research Paper
Published 14 Apr 2023

Plasmonic nanotechnology for photothermal applications – an evaluation

  • A. R. Indhu,
  • L. Keerthana and
  • Gnanaprakash Dharmalingam

Beilstein J. Nanotechnol. 2023, 14, 380–419, doi:10.3762/bjnano.14.33

Graphical Abstract
  • tunability of optothermal properties and enhanced stability, these nanostructures show a wide range of applications in optical sensors, steam generation, water desalination, thermal energy storage, and biomedical applications such as photothermal (PT) therapy. The PT effect, that is, the conversion of
  • materials [7][8], such as Au nanoparticles (AuNPs), in photodynamic therapy [9][10][11]. Metal nanoparticles in general have been extensively explored in PPT applications due to their high free electron density and the possibility of intricate tuning of light absorption [12]. Noble metal nanoparticles with
  • temperature and reactivity. With broad applications in therapy [22][23], laser combined imaging, solar vapour generation [24], and biosensors [25], the global market for PT devices is expected to be a multimillion dollar enterprise by 2025 [26]. This review will focus on concepts such as the theoretical
PDF
Album
Review
Published 27 Mar 2023

The steep road to nonviral nanomedicines: Frequent challenges and culprits in designing nanoparticles for gene therapy

  • Yao Yao,
  • Yeongun Ko,
  • Grant Grasman,
  • Jeffery E. Raymond and
  • Joerg Lahann

Beilstein J. Nanotechnol. 2023, 14, 351–361, doi:10.3762/bjnano.14.30

Graphical Abstract
PDF
Album
Supp Info
Perspective
Published 17 Mar 2023

Polymer nanoparticles from low-energy nanoemulsions for biomedical applications

  • Santiago Grijalvo and
  • Carlos Rodriguez-Abreu

Beilstein J. Nanotechnol. 2023, 14, 339–350, doi:10.3762/bjnano.14.29

Graphical Abstract
  •  5) with viabilities higher than 70% for HeLa cells are promising candidates for gene therapy (e.g., gene vaccines). Protein binding on PLGA nanoparticles prepared from nanoemulsions has also been studied [62]. After incubation with human serum, afamin was one of the specific proteins bound to PLGA
PDF
Album
Review
Published 13 Mar 2023

Overview of mechanism and consequences of endothelial leakiness caused by metal and polymeric nanoparticles

  • Magdalena Lasak and
  • Karol Ciepluch

Beilstein J. Nanotechnol. 2023, 14, 329–338, doi:10.3762/bjnano.14.28

Graphical Abstract
  • from the EPR effect and active targeting strategies may increase the efficacy of the therapy. Nevertheless, the accumulation in other, non-targeted organs indicates the existence of a method of NP transport through the endothelium other than EPR [26][28][29][32]. Sindhwani et al. identified an active
  • independent of the tumor stage. Therefore, NanoEL can be used in the early stages of cancer without requiring the EPR effect. Early diagnosis and treatment when the tumor has accumulated only a few mutations is a key determinant in the effectiveness of the therapy. Moreover, earlier diagnosis and treatment
PDF
Album
Review
Published 08 Mar 2023

Recent progress in cancer cell membrane-based nanoparticles for biomedical applications

  • Qixiong Lin,
  • Yueyou Peng,
  • Yanyan Wen,
  • Xiaoqiong Li,
  • Donglian Du,
  • Weibin Dai,
  • Wei Tian and
  • Yanfeng Meng

Beilstein J. Nanotechnol. 2023, 14, 262–279, doi:10.3762/bjnano.14.24

Graphical Abstract
  • clinical translation prospects, and the associated challenges are discussed. Keywords: cancer cell biomimetics; nanoparticles; precision medicine; targeted therapy; theranostic nanomedicine; Review 1 Introduction Biomimetic nanotechnology, an emerging interdisciplinary field, involves different
  • necessary to customize treatments to maximize the benefit of the treatment for the patient at the lowest cost. Cancer cell membranes hold great promise for personalized precision therapy because of their unique homologous targeting properties and immune evasion capabilities. Cancer cell membrane-based
  • summarized in Table 1 and described in detail in the following sections. 3.1 Malignant neoplasms Insufficient targeting of tumor tissue has hindered patients from further benefiting from therapy. Exploiting the homotypic aggregation behavior during initiation and progression of solid tumors [31], biomimetic
PDF
Album
Review
Published 27 Feb 2023

Nanotechnology – a robust tool for fighting the challenges of drug resistance in non-small cell lung cancer

  • Filip Gorachinov,
  • Fatima Mraiche,
  • Diala Alhaj Moustafa,
  • Ola Hishari,
  • Yomna Ismail,
  • Jensa Joseph,
  • Maja Simonoska Crcarevska,
  • Marija Glavas Dodov,
  • Nikola Geskovski and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2023, 14, 240–261, doi:10.3762/bjnano.14.23

Graphical Abstract
  • therapy, leading to the rapid exhaustion of standard molecularly targeted therapeutic options against mutant variants. Attacking multiple molecular targets within one or several signaling pathways by co-delivery of multiple agents is a viable strategy for overcoming and preventing resistance to EGFR TKIs
  • intracellular internalization, and bring advantages over conventional nanocarriers. Keywords: co-delivery nanoparticles; combinatorial therapy; EGFR TKI resistance; non-small cell lung cancer (NSCLC); overcoming and preventing resistance; Introduction Among the malignant diseases, lung cancer takes the lead
  • treatments because of their ability to target specific molecular abnormalities associated with NSCLC cells [8][9][10][11][12][13]. Unlike traditional chemotherapy, which interferes with cell division and kills rapidly dividing cells, molecularly targeted therapy is directed towards somatic genome mutations
PDF
Album
Review
Published 22 Feb 2023

Cyclodextrins as eminent constituents in nanoarchitectonics for drug delivery systems

  • Makoto Komiyama

Beilstein J. Nanotechnol. 2023, 14, 218–232, doi:10.3762/bjnano.14.21

Graphical Abstract
  • delivery of chemical drugs Light irradiation is an eminent stimulus for the on–off control of drug delivery since light can be strictly focused to target sites and irradiated only when necessary. These two factors facilitate the precise spatiotemporal control of the therapy and minimize undesired side
  • delivered to a target site, the therapy should be more efficient than a unimodal therapy. For such a co-delivery, CyD-based nanoarchitectures are very convenient since well-defined structures of CyDs allow for the precise molecular design of nanoarchitectures in which the desired nucleic acid drugs are
  • S–S linkages by intracellular glutathione (GSH). As the result, both gene editing by sgRNA/Cas9 and gene silencing by the antisense DNA cooperatively suppressed the PLK1 gene, providing remarkable antitumor activity. 4 CyD-based nanoarchitectures for effective photodynamic therapy Photodynamic
PDF
Album
Review
Published 09 Feb 2023

Concentration-dependent photothermal conversion efficiency of gold nanoparticles under near-infrared laser and broadband irradiation

  • Vikas,
  • Raj Kumar and
  • Sanjeev Soni

Beilstein J. Nanotechnol. 2023, 14, 205–217, doi:10.3762/bjnano.14.20

Graphical Abstract
  • ]. Localized heat generation through GNPs under irradiation can be used for hyperthermia treatment of tumors, termed plasmonic photothermal therapy (PPTT) [7][8][9][10][11]. The net temperature rise of a GNP-containing medium highly depends on shape and size of the GNPs, the dielectric constant of the medium
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2023

Facile preparation of Au- and BODIPY-grafted lipid nanoparticles for synergized photothermal therapy

  • Yuran Wang,
  • Xudong Li,
  • Haijun Chen and
  • Yu Gao

Beilstein J. Nanotechnol. 2022, 13, 1432–1444, doi:10.3762/bjnano.13.118

Graphical Abstract
  • Synthesis and Function Discovery (Fujian Province University), Fuzhou University, Fuzhou 350116, Fujian, China 10.3762/bjnano.13.118 Abstract Gold nanoparticles with large size exhibit preferable properties for photothermal therapy (PTT). However, the prolonged tissue retention and slow elimination of gold
  • synergistic PTT in the treatment of cancer and other diseases. Keywords: BODIPY; gold nanoparticles; lipid nanoparticles; photothermal therapy; synergism; Introduction Photothermal therapy (PTT) relies on photothermal agents (PTAs) to convert light into heat energy to burn cancer cells. Due to its spatial
  • specificity and minimal invasiveness, it has attracted a great deal of attention as complementary modality for conventional cancer therapy options [1]. Gold nanoparticles (AuNPs) can absorb light and generate heat from light absorption because of the surface plasmon resonance (SPR) phenomenon and the tunable
PDF
Album
Full Research Paper
Published 02 Dec 2022
Other Beilstein-Institut Open Science Activities