Search results

Search for "z(V)" in Full Text gives 4 result(s) in Beilstein Journal of Nanotechnology.

Closed-loop conductance scanning tunneling spectroscopy: demonstrating the equivalence to the open-loop alternative

  • Chris Hellenthal,
  • Kai Sotthewes,
  • Martin H. Siekman,
  • E. Stefan Kooij and
  • Harold J. W. Zandvliet

Beilstein J. Nanotechnol. 2015, 6, 1116–1124, doi:10.3762/bjnano.6.113

Graphical Abstract
  • using closed-loop z(V) conductance scanning tunneling spectroscopy (STS) measurements for the determination of the effective tunneling barrier by comparing them to more conventional open-loop I(z) measurements. Through the development of a numerical model, the individual contributions to the effective
  • charge; scanning tunneling spectroscopy (STS); tunneling barrier; work function; z(V); Introduction Although the scanning tunneling microscope (STM) has been used for the topographical imaging of conductive samples since the early 1980s [1], recent times have seen an increasing interest in the
  • studies have reported on the possibility of obtaining LDOS information by using closed-loop z(V) measurements [5][6][7][8]. Another field of interest is the determination of the work function of materials, through the use of either STS or mechanical break junction (MBJ) measurements. In the case of STS
PDF
Album
Supp Info
Full Research Paper
Published 06 May 2015

Ni nanocrystals on HOPG(0001): A scanning tunnelling microscope study

  • Michael Marz,
  • Keisuke Sagisaka and
  • Daisuke Fujita

Beilstein J. Nanotechnol. 2013, 4, 406–417, doi:10.3762/bjnano.4.48

Graphical Abstract
  • interlayer is present, the Hamaker constant can be considered to be H = 4·10−19 J, and εr = 1 is valid. For simplicity, the electrical field is considered not to be influenced by the presence of the clusters and its value to be constant over the whole width of the cluster, leading to the convenient form E(z
  • ) = V/z. Furthermore, a good conductivity between cluster and substrate is assumed leading to the disappearance of the dipole moment p and consequently the dielectrophoretic force. Taking these assumptions into account, the total attractive force can be written as: Noticing that in our experiments the
PDF
Album
Full Research Paper
Published 28 Jun 2013

Deconvolution of the density of states of tip and sample through constant-current tunneling spectroscopy

  • Holger Pfeifer,
  • Berndt Koslowski and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2011, 2, 607–617, doi:10.3762/bjnano.2.64

Graphical Abstract
  • -current mode (zV spectroscopy). The scheme is based on the validity of the Wentzel–Kramers–Brillouin (WKB) approximation and the trapezoidal approximation of the electron potential within the tunneling barrier. In a numerical treatment of zV spectroscopy, we first analyze how the position and amplitude
  • one-dimensional WKB approximation. Application of the deconvolution scheme to experimental data obtained on Nb(110) reveals a convergent behavior, providing separately the DOS of both sample and tip. In detail, however, there are systematic quantitative deviations between the DOS results based on zV
  • coupled integro-differential equations, which allow for a deconvolution of the transmission probability as well as of the LDOS of tip and sample [13]. I–V spectroscopy is not the only STS measurement mode to determine the LDOS of a sample. Though less commonly used, zV spectroscopy, alias constant
PDF
Album
Full Research Paper
Published 19 Sep 2011

Terthiophene on Au(111): A scanning tunneling microscopy and spectroscopy study

  • Berndt Koslowski,
  • Anna Tschetschetkin,
  • Norbert Maurer,
  • Elena Mena-Osteritz,
  • Peter Bäuerle and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2011, 2, 561–568, doi:10.3762/bjnano.2.60

Graphical Abstract
  • -separation (I-V) and constant-current (z-V) STS clearly reveal the highest occupied (HOMO) and lowest unoccupied (LUMO) molecular orbitals, which are found at −1.2 eV and +2.3 eV, respectively. The HOMO–LUMO gap corresponds to that of a free molecule, indicating a rather weak interaction between 3T and Au
  • molecule. To resolve the electronic structure in an extended energy range covering more of the d bands and the entire LUMO, we performed constant-current (z-V) spectroscopy, where the tunneling current is kept constant while the tip–sample separation, z, and the differential conductivity, ∂VI, is recorded
  • . As shown previously [12], a more appropriate quantity to compare to the DOS of the sample is the product ∂VI × Vt since, when plotting versus Vt, the singularity of ∂VI at Vt = 0 is lifted. Besides the features already mentioned above, these z-V spectra show additionally the upper edge of the L gap
PDF
Album
Full Research Paper
Published 09 Sep 2011
Other Beilstein-Institut Open Science Activities