Search results

Search for "α-synuclein" in Full Text gives 3 result(s) in Beilstein Journal of Nanotechnology.

Mechanical and thermodynamic properties of Aβ42, Aβ40, and α-synuclein fibrils: a coarse-grained method to complement experimental studies

  • Adolfo B. Poma,
  • Horacio V. Guzman,
  • Mai Suan Li and
  • Panagiotis E. Theodorakis

Beilstein J. Nanotechnol. 2019, 10, 500–513, doi:10.3762/bjnano.10.51

Graphical Abstract
  • fibrils associated with neurodegenerative diseases such as Aβ40, Aβ42, and α-synuclein systems to obtain a molecular understanding and interpretation of nanomechanical characterization experiments. The computational method is versatile and addresses a new subarea within the mechanical characterization of
  • formation. Finally, we find that α-synuclein fibrils are thermally less stable than β-amyloid fibrils. We anticipate that our molecular-level analysis of the mechanical response under different deformation conditions for the range of fibrils considered here will provide significant insights for the
  • experimental observations. Keywords: β-amyloid; atomic force microscopy, mechanical deformation; molecular simulation; proteins; α-synuclein; Introduction All-atom molecular dynamics (MD) simulations have been employed to study the physical and chemical behaviour of the fundamental biomolecules of life (e.g
PDF
Album
Full Research Paper
Published 19 Feb 2019

Functionalization of α-synuclein fibrils

  • Simona Povilonienė,
  • Vida Časaitė,
  • Virginijus Bukauskas,
  • Arūnas Šetkus,
  • Juozas Staniulis and
  • Rolandas Meškys

Beilstein J. Nanotechnol. 2015, 6, 124–133, doi:10.3762/bjnano.6.12

Graphical Abstract
  • in the development of novel nanomaterials. Under certain conditions, amyloid protein α-synuclein forms well-ordered structures – fibrils, which have proven to be valuable building blocks for bionanotechnological approaches. Herein we demonstrate the functionalization of fibrils formed by a mutant α
  • fibrils (and of the additional components) to assemble into such complex structures offers new opportunities for fabricating novel hybrid materials or devices. Keywords: α-synuclein; atomic force microscopy; gold nanoparticles; nanostructures; self-assembly; Introduction Due to their ability to form
  • , have been investigated by a combination of techniques such as atomic force microscopy (AFM), transmission electron microscopy (TEM), measurement of thioflavin T (ThT) fluorescence, etc. [6][7]. In this study, α-synuclein (α-Syn), the amyloid protein that is linked to several neurodegenerative diseases
PDF
Album
Full Research Paper
Published 12 Jan 2015

Molecular dynamics simulations of mechanical failure in polymorphic arrangements of amyloid fibrils containing structural defects

  • Hlengisizwe Ndlovu,
  • Alison E. Ashcroft,
  • Sheena E. Radford and
  • Sarah A. Harris

Beilstein J. Nanotechnol. 2013, 4, 429–440, doi:10.3762/bjnano.4.50

Graphical Abstract
  • properties of α-synuclein and full-length transthyretin under high-pressure conditions have shown that their robustness is indeed dominated by the presence of defects within the hydrophobic core [31]. From our understanding of the crystallisation of inorganic substances, such as minerals and ceramics, it is
PDF
Album
Full Research Paper
Published 04 Jul 2013
Other Beilstein-Institut Open Science Activities