Synthesis of chiral N-phosphoryl aziridines through enantioselective aziridination of alkenes with phosphoryl azide via Co(II)-based metalloradical catalysis

Jingran Tao, Li-Mei Jin and X. Peter Zhang
Beilstein J. Org. Chem. 2014, 10, 1282–1289. https://doi.org/10.3762/bjoc.10.129

Supporting Information

Supporting Information File 1: Experimental procedures and characterization data. Copies of 1H, 13C, and 31P NMR spectra and HPLC data for all new compounds.
Format: PDF Size: 1.8 MB Download

Cite the Following Article

Synthesis of chiral N-phosphoryl aziridines through enantioselective aziridination of alkenes with phosphoryl azide via Co(II)-based metalloradical catalysis
Jingran Tao, Li-Mei Jin and X. Peter Zhang
Beilstein J. Org. Chem. 2014, 10, 1282–1289. https://doi.org/10.3762/bjoc.10.129

How to Cite

Tao, J.; Jin, L.-M.; Zhang, X. P. Beilstein J. Org. Chem. 2014, 10, 1282–1289. doi:10.3762/bjoc.10.129

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Wang, J.; Luo, M.-P.; Gu, Y.-J.; Liu, Y.-Y.; Yin, Q.; Wang, S.-G. Chiral Cpx Rhodium(III)-Catalyzed Enantioselective Aziridination of Unactivated Terminal Alkenes. Angewandte Chemie (International ed. in English) 2024, 63, e202400502. doi:10.1002/anie.202400502
  • Wang, J.; Luo, M.; Gu, Y.; Liu, Y.; Yin, Q.; Wang, S. Chiral CpxRhodium(III)‐Catalyzed Enantioselective Aziridination of Unactivated Terminal Alkenes. Angewandte Chemie 2024, 136. doi:10.1002/ange.202400502
  • Gross, P.; Im, H.; Laws, D.; Park, B.; Baik, M.-H.; Blakey, S. B. Enantioselective Aziridination of Unactivated Terminal Alkenes Using a Planar Chiral Rh(III) Indenyl Catalyst. Journal of the American Chemical Society 2024, 146, 1447–1454. doi:10.1021/jacs.3c10637
  • Ajayi, N. D.; Ajayi, S. A.; Boyi, J. O.; Olaniyi, O. O. Understanding the Chemistry of Nitrene and Highlighting its Remarkable Catalytic Capabilities as a Non-Heme Iron Enzyme. SSRN Electronic Journal 2024. doi:10.2139/ssrn.4682019
  • Fanourakis, A.; Phipps, R. J. Catalytic, asymmetric carbon-nitrogen bond formation using metal nitrenoids: from metal-ligand complexes via metalloporphyrins to enzymes. Chemical science 2023, 14, 12447–12476. doi:10.1039/d3sc04661c
  • Ward, R. M.; Hu, Y.; Tu, N. P.; Schomaker, J. M. Solvent Effects on the Chemo- and Site-Selectivity of Transition Metal-Catalyzed Nitrene Transfer Reactions: Alternatives to Chlorinated Solvents. ChemSusChem 2023, 17, e202300964. doi:10.1002/cssc.202300964
  • Lee, K.; Seo, K.; Dehghany, M.; Hu, Y.; Trinh, A.; Schomaker, J. M. An Overview of N-Heterocycle Syntheses Involving Nitrene Transfer Reactions. Topics in Heterocyclic Chemistry; Springer International Publishing, 2023; pp 313–377. doi:10.1007/7081_2023_66
  • Xiao, X.; Xu, K.; Gao, Z.-H.; Zhu, Z.-H.; Ye, C.; Zhao, B.; Luo, S.; Ye, S.; Zhou, Y.-G.; Xu, S.; Zhu, S.-F.; Bao, H.; Sun, W.; Wang, X.; Ding, K. Biomimetic asymmetric catalysis. Science China Chemistry 2023, 66, 1553–1633. doi:10.1007/s11426-023-1578-y
  • Zerull, E.; Trinh, T. A.; Kim, J.; Schomaker, J. M. doi:10.1002/9783527834242.chf0139
  • Ward, R. M.; Schomaker, J. M. doi:10.1002/9783527834242.chf0147
  • Shioiri, T.; Ishihara, K.; Matsugi, M. Cutting edge of diphenyl phosphorazidate (DPPA) as a synthetic reagent – A fifty-year odyssey. Organic Chemistry Frontiers 2022, 9, 3360–3391. doi:10.1039/d2qo00403h
  • Reek, J. N. H.; de Bruin, B.; Pullen, S.; Mooibroek, T. J.; Kluwer, A. M.; Caumes, X. Transition Metal Catalysis Controlled by Hydrogen Bonding in the Second Coordination Sphere. Chemical reviews 2022, 122, 12308–12369. doi:10.1021/acs.chemrev.1c00862
  • Wang, D.-S.; Zhang, X. P. Oxidation: C-N Bond Formation by Oxidation (Aziridines). Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier, 2022. doi:10.1016/b978-0-32-390644-9.00024-x
  • Deng, T.; Mazumdar, W.; Yoshinaga, Y.; Patel, P. B.; Malo, D.; Malo, T.; Wink, D. J.; Driver, T. G. Rh2(II)-Catalyzed Intermolecular N-Aryl Aziridination of Olefins Using Nonactivated N Atom Precursors. Journal of the American Chemical Society 2021, 143, 19149–19159. doi:10.1021/jacs.1c09229
  • Peng, X.-H.; Bai, R.; Liu, S.; Li, Z.; Jiao, L.-Y. Substitution of diarylphosphoryl azides with aliphatic amines catalyzed by simple rare-earth metal salts: Efficient and novel preparation of phosphoryl amides. Applied Organometallic Chemistry 2021, 36. doi:10.1002/aoc.6507
  • Ju, M.; Schomaker, J. M. Nitrene transfer catalysts for enantioselective C–N bond formation. Nature reviews. Chemistry 2021, 5, 580–594. doi:10.1038/s41570-021-00291-4
  • Kalra, A.; Bagchi, V.; Paraskevopoulou, P.; Das, P.; Ai, L.; Sanakis, Y.; Raptopoulos, G.; Mohapatra, S.; Choudhury, A.; Sun, Z.; Cundari, T. R.; Stavropoulos, P. Is the Electrophilicity of the Metal Nitrene the Sole Predictor of Metal-Mediated Nitrene Transfer to Olefins? Secondary Contributing Factors as Revealed by a Library of High-Spin Co(II) Reagents. Organometallics 2021, 40, 1974–1996. doi:10.1021/acs.organomet.1c00267
  • Riart-Ferrer, X.; Sang, P.; Tao, J.; Xu, H.; Jin, L.-M.; Lu, H.; Cui, X.; Wojtas, L.; Zhang, X. P. Metalloradical activation of carbonyl azides for enantioselective radical aziridination. Chem 2021, 7, 1120–1134. doi:10.1016/j.chempr.2021.03.001
  • Miyabe, H. Synthetic Approaches to Nonaromatic Nitrogen Heterocycles; Wiley, 2020; pp 595–629. doi:10.1002/9781119708841.ch19
  • Fanourakis, A.; Docherty, P. J.; Chuentragool, P.; Phipps, R. J. Recent Developments in Enantioselective Transition Metal Catalysis Featuring Attractive Noncovalent Interactions between Ligand and Substrate. ACS catalysis 2020, 10, 10672–10714. doi:10.1021/acscatal.0c02957
Other Beilstein-Institut Open Science Activities