Streptopyridines, volatile pyridine alkaloids produced by Streptomyces sp. FORM5

Ulrike Groenhagen, Michael Maczka, Jeroen S. Dickschat and Stefan Schulz
Beilstein J. Org. Chem. 2014, 10, 1421–1432. https://doi.org/10.3762/bjoc.10.146

Supporting Information

Supporting Information File 1: Total ion chromatograms of strain Streptomyces sp. FORM5, mass spectra, 16S-RNA data, and 1H and 13C NMR spectra of the synthetic compounds.
Format: PDF Size: 1003.3 KB Download

Cite the Following Article

Streptopyridines, volatile pyridine alkaloids produced by Streptomyces sp. FORM5
Ulrike Groenhagen, Michael Maczka, Jeroen S. Dickschat and Stefan Schulz
Beilstein J. Org. Chem. 2014, 10, 1421–1432. https://doi.org/10.3762/bjoc.10.146

How to Cite

Groenhagen, U.; Maczka, M.; Dickschat, J. S.; Schulz, S. Beilstein J. Org. Chem. 2014, 10, 1421–1432. doi:10.3762/bjoc.10.146

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Narayanan, M.; Devi, D.; Kandhasamy, S.; Gnanasekaran, C.; Govindhan, R.; Manoharan, N. Role of Bioactive Compounds Synthesized by Extremophilic Microbes and Their Bioactivity. Reference Series in Phytochemistry; Springer Nature Switzerland, 2024; pp 1–24. doi:10.1007/978-3-031-30037-0_54-1
  • Wang, X.; Zhang, J.; Lu, X.; Bai, Y.; Wang, G. Two diversities meet in the rhizosphere: root specialized metabolites and microbiome. Journal of genetics and genomics = Yi chuan xue bao 2023. doi:10.1016/j.jgg.2023.10.004
  • Eshima, J.; Pennington, T. R.; Abdellatif, Y.; Olea, A. P.; Lusk, J. F.; Ambrose, B. D.; Marschall, E.; Miranda, C.; Phan, P.; Aridi, C.; Smith, B. S. An engineered culture vessel and flow system to improve thein vitroanalysis of volatile organic compounds. Cold Spring Harbor Laboratory 2023. doi:10.1101/2023.08.05.552027
  • Raouf, A.; Adeel, M.; Khalid, M.; Ahmed, A.; Safdar, K.; Khan, M. U.; Assiri, M. A.; Imran, M. Exploration of electronic and non-linear optical properties of novel 4-Aryl-2-methylpyridine based compounds synthesized via high-yielding Pd(0) catalysed reaction. Journal of Molecular Structure 2023, 1274, 134469. doi:10.1016/j.molstruc.2022.134469
  • Ye, S.; Ballin, G.; Pérez-Victoria, I.; Braña, A. F.; Martín, J.; Reyes, F.; Salas, J. A.; Méndez, C. Combinatorial biosynthesis yields novel hybrid argimycin P alkaloids with diverse scaffolds in Streptomyces argillaceus. Microbial biotechnology 2022, 15, 2905–2916. doi:10.1111/1751-7915.14167
  • Naureen, Z.; Gilani, S. A.; Benny, B. K.; Sadia, H.; Hafeez, F. Y.; Khanum, A. Metabolomic Profiling of Plant Growth-Promoting Rhizobacteria for Biological Control of Phytopathogens. Fungal Biology; Springer International Publishing, 2022; pp 181–209. doi:10.1007/978-3-031-04805-0_9
  • Laskaris, P.; Karagouni, A. D. Streptomyces, Greek Habitats and Novel Pharmaceuticals: A Promising Challenge. Microbiology Research 2021, 12, 840–846. doi:10.3390/microbiolres12040061
  • Azpíroz, R.; Greger, I.; Oro, L. A.; Passarelli, V.; Castarlenas, R.; Pérez-Torrente, J. J. Preparation of Butadienylpyridines by Iridium-NHC-Catalyzed Alkyne Hydroalkenylation and Quinolizine Rearrangement. Chemistry (Weinheim an der Bergstrasse, Germany) 2021, 27, 11868–11878. doi:10.1002/chem.202101414
  • Ullah, A.; Bano, A.; Khan, N. Climate Change and Salinity Effects on Crops and Chemical Communication Between Plants and Plant Growth-Promoting Microorganisms Under Stress. Frontiers in Sustainable Food Systems 2021, 5. doi:10.3389/fsufs.2021.618092
  • Weisskopf, L.; Schulz, S.; Garbeva, P. Microbial volatile organic compounds in intra-kingdom and inter-kingdom interactions. Nature reviews. Microbiology 2021, 19, 391–404. doi:10.1038/s41579-020-00508-1
  • Xu, H.; Dickschat, J. S. Germacrene A-A Central Intermediate in Sesquiterpene Biosynthesis. Chemistry (Weinheim an der Bergstrasse, Germany) 2020, 26, 17318–17341. doi:10.1002/chem.202002163
  • Schulz, S.; Schlawis, C.; Koteska, D.; Harig, T.; Biwer, P. Structural Diversity of Bacterial Volatiles. Bacterial Volatile Compounds as Mediators of Airborne Interactions; Springer Singapore, 2020; pp 93–121. doi:10.1007/978-981-15-7293-7_3
  • Akram, M.; Niaz, S.; Adeel, M.; Tahir, M.; Ullah, I.; Ullah, M. A.; Subashchandrabose, S.; Uddin, G. Spectroscopic, structural, electronic and bioactive characteristics of 3,5-bis(2,5-dimethylphenyl)pyridine (1): An experimental and theoretical investigations. Journal of Molecular Structure 2020, 1203, 127448. doi:10.1016/j.molstruc.2019.127448
  • Ullah, A.; Bano, A.; Janjua, H. T. Microbial Secondary Metabolites and Defense of Plant Stress. Microbial Services in Restoration Ecology; Elsevier, 2020; pp 37–46. doi:10.1016/b978-0-12-819978-7.00003-8
  • Schulz, S.; Biwer, P.; Harig, T.; Koteska, D.; Schlawis, C. Chemical Ecology of Bacterial Volatiles. Comprehensive Natural Products III; Elsevier, 2020; pp 161–178. doi:10.1016/b978-0-12-409547-2.14817-6
  • Garbeva, P.; Weisskopf, L. Airborne medicine: bacterial volatiles and their influence on plant health. The New phytologist 2019, 226, 32–43. doi:10.1111/nph.16282
  • Tan, L. T. H.; Mahendra, C. K.; Yow, Y.-Y.; Chan, K.-G.; Khan, T. M.; Lee, L. H.; Goh, B. H. Streptomyces sp. MUM273b: A mangrove-derived potential source for antioxidant and UVB radiation protectants. MicrobiologyOpen 2019, 8, e859. doi:10.1002/mbo3.859
  • Shen, R.; Dong, C.; Yang, J.; Han, L.-B. Copper(II) Acetate-Catalyzed Synthesis of Phosphorylated Pyridines via Denitrogenative C−P Coupling between Pyridotriazoles and P(O)H Compounds. Advanced Synthesis & Catalysis 2018, 360, 4252–4258. doi:10.1002/adsc.201800909
  • Ghiasuddin; Akram, M.; Adeel, M.; Khalid, M.; Tahir, M.; Khan, M. U.; Asghar, M. A.; Ullah, M. A.; Iqbal, M. A combined experimental and computational study of 3-bromo-5-(2,5-difluorophenyl) pyridine and 3,5-bis(naphthalen-1-yl)pyridine: Insight into the synthesis, spectroscopic, single crystal XRD, electronic, nonlinear optical and biological properties. Journal of Molecular Structure 2018, 1160, 129–141. doi:10.1016/j.molstruc.2018.01.100
  • Djinni, I.; Djoudi, W.; Souagui, S.; Rabia, F.; Rahmouni, S.; Mancini, I.; Kecha, M. Streptomyces thermoviolaceus SRC3 strain as a novel source of the antibiotic adjuvant streptazolin: A statistical approach toward the optimized production. Journal of microbiological methods 2018, 148, 161–168. doi:10.1016/j.mimet.2018.04.008

Patents

  • ISHIKAWA TERUHIKO; IWAMI MORITA. Method for producing kakeromycin and derivatives thereof. US 11753385 B2, Sept 12, 2023.
  • ISHIKAWA AKIHIKO; IWAMI MORITA. Method for producing Kakeromycin and derivative thereof. CN 114835596 A, Aug 2, 2022.
  • ISHIKAWA TERUHIKO; IWAMI MORITA. METHOD FOR PRODUCING KAKEROMYCIN AND DERIVATIVES THEREOF. US 20220024883 A1, Jan 27, 2022.
  • ISHIKAWA TERUHIKO; IWAMI MORITA. METHOD FOR PRODUCING KAKEROMYCIN AND DERIVATIVES THEREOF. EP 3263572 B1, Dec 15, 2021.
  • ISHIKAWA TERUHIKO; IWAMI MORITA. Method for producing kakeromycin and derivatives thereof. US 11155526 B2, Oct 26, 2021.
  • ISHIKAWA TERUHIKO; IWAMI MORITA. Method for producing kakeromycin and derivatives thereof. US 11066374 B2, July 20, 2021.
  • ISHIKAWA AKIHIKO; IWAMI MORITA. METHOD FOR PRODUCING CACHEROMYCIN AND DERIVATIVE THEREOF. JP 2019194214 A, Nov 7, 2019.
Other Beilstein-Institut Open Science Activities