Supercritical carbon dioxide: a solvent like no other

Jocelyn Peach and Julian Eastoe
Beilstein J. Org. Chem. 2014, 10, 1878–1895. https://doi.org/10.3762/bjoc.10.196

Cite the Following Article

Supercritical carbon dioxide: a solvent like no other
Jocelyn Peach and Julian Eastoe
Beilstein J. Org. Chem. 2014, 10, 1878–1895. https://doi.org/10.3762/bjoc.10.196

How to Cite

Peach, J.; Eastoe, J. Beilstein J. Org. Chem. 2014, 10, 1878–1895. doi:10.3762/bjoc.10.196

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Gilbert, K. C.; Peebles, S. A.; Pate, B. H.; Peebles, R. A. Application of Intensity Ratios to Disentangle Rotational Spectra of Large Molecular Clusters: Trifluoroethylene with up to 6 CO2 Molecules. The journal of physical chemistry. A 2025, 129, 10393–10403. doi:10.1021/acs.jpca.5c05251
  • García-Casas, I.; Montes, A.; León-Marcos, L.; Pereyra, C.; Valor, D. Supercritical CO2-Processed Polymeric Foams for Process Intensification Structure, Functionality, and Advanced Applications. Advanced Foams for Process Intensification [Working Title]; IntechOpen, 2025. doi:10.5772/intechopen.1012450
  • Pu, W.; Li, J.; Du, D.; Zhao, J.; Wu, T.; Xiong, Y.; Chen, P.; Jiang, R. Research progress of thickener for supercritical carbon dioxide fracturing fluid. Petroleum 2025, 11, 545–567. doi:10.1016/j.petlm.2025.08.002
  • Zhou, D.; Yu, W.; Sun, J.; Qi, J.; Yin, J. Advances and applications of supercritical carbon dioxide microemulsions with or without ionic liquids. The Journal of Supercritical Fluids 2025, 222, 106603. doi:10.1016/j.supflu.2025.106603
  • Godha, A. K.; Nandeesh, H. B.; Gavara, G.; Sambasivam, G.; Karthik, C. S. Synthesis of imatinib using greener solvents: a sustainable approach. New Journal of Chemistry 2025, 49, 12633–12638. doi:10.1039/d5nj01768h
  • Shahid, M.; Sidek, A.; Younas, R.; Ameen, H. F. M.; Ismail, A.; ALBajalan, A. R.; Yahya, M. N. The impact of brine salinity on CO2 capillary trapping efficiency in sandstone saline aquifers using a two-dimensional micromodel. Physics of Fluids 2025, 37. doi:10.1063/5.0269937
  • Fogang, L. T.; Hussain, S. M.; Solling, T. I. CO2-philicity of crude oil constituents: A computational study. Chemical Thermodynamics and Thermal Analysis 2025, 18, 100167. doi:10.1016/j.ctta.2025.100167
  • Delolo, F. G.; Almeida, L. D.; Vieira, G. M.; dos Santos, E. N.; Gusevskaya, E. V. Green solvents in hydroformylation-based processes and other carbonylation reactions. Green Chemistry 2025, 27, 4816–4866. doi:10.1039/d5gc00451a
  • Ladyfair Hem, B. Innovation Technique for Enhanced Oil Recovery: Sustainable Approaches and Environmental Considerations. Recent Approaches in Enhanced Oil Recovery - New Perspectives and Future Outlook [Working Title]; IntechOpen, 2025. doi:10.5772/intechopen.1009095
  • Lambert, A.; Ingrosso, F. A Molecular Dynamics Study of the Solvation Properties of Sugars in Supercritical Carbon Dioxide. Molecules (Basel, Switzerland) 2025, 30, 1256. doi:10.3390/molecules30061256
  • Sagisaka, M.; Darmanin, T.; Guittard, F.; Eastoe, J. New fluorine-free low surface energy surfactants and surfaces. Journal of colloid and interface science 2025, 690, 137229. doi:10.1016/j.jcis.2025.03.018
  • Wang, N.; Pei, C.; Zhong, Y.; Zhang, Y.; Liu, X.; Hou, J.; Yuan, Y.; Zhang, R. Molecular Dynamics Simulation of the Compatibility Between Supercritical Carbon Dioxide and Coating Resins Assisted by Co-Solvents. Materials (Basel, Switzerland) 2024, 17, 6271. doi:10.3390/ma17246271
  • Sun, Y.; He, L.; Li, C.; Lu, C.; Li, X. Application of Thickeners in Supercritical Carbon Dioxide EOR and Fracturing: A Review. Energy & Fuels 2024, 39, 166–181. doi:10.1021/acs.energyfuels.4c04887
  • Abid, K.; Baena Velásquez, A. F.; Teodoriu, C. Comprehensive Comparative Review of the Cement Experimental Testing Under CO2 Conditions. Energies 2024, 17, 5968. doi:10.3390/en17235968
  • Kolawole, O.; Thammakhet-Buranachai, C.; Petchkongkaew, A.; Sooksimuang, T.; Elliott, C.; Karoonuthaisiri, N. Evaluating the green credentials and performance of deep eutectic solvents in the extraction of antibiotics and mycotoxins in foods. Green Chemistry Letters and Reviews 2024, 17. doi:10.1080/17518253.2024.2427797
  • Balmanno, A.; Falconer, J. R.; Ravuri, H. G.; Mills, P. C. Strategies to Improve the Transdermal Delivery of Poorly Water-Soluble Non-Steroidal Anti-Inflammatory Drugs. Pharmaceutics 2024, 16, 675. doi:10.3390/pharmaceutics16050675
  • Belov, K. V.; Dyshin, A. A.; Khodov, I. A. Conformational analysis of arbidol in supercritical carbon Dioxide: Insights into 'opened' and 'closed' conformer groups. Journal of Molecular Liquids 2024, 397, 124074. doi:10.1016/j.molliq.2024.124074
  • Furuya, T.; Shimoyama, Y.; Orita, Y. Low temperature synthesis of ZnO particles using a CO2-driven mechanism under high pressure. RSC advances 2024, 14, 5176–5183. doi:10.1039/d3ra07067k
  • Gang, S.; Ryou, J.-E.; Yong Lee, J.; Jung, J. Enhancement of carbon dioxide storage efficiency using anionic surfactants. Fuel 2024, 358, 129998. doi:10.1016/j.fuel.2023.129998
  • Páez, D. E. Green chemistry and homogeneous catalysis. Homogeneous Catalysis Concepts and Basics; Elsevier, 2024; pp 333–351. doi:10.1016/b978-0-443-15181-1.00002-x
Other Beilstein-Institut Open Science Activities