Synthesis of quinoline-3-carboxylates by a Rh(II)-catalyzed cyclopropanation-ring expansion reaction of indoles with halodiazoacetates

Magnus Mortén, Martin Hennum and Tore Bonge-Hansen
Beilstein J. Org. Chem. 2015, 11, 1944–1949. https://doi.org/10.3762/bjoc.11.210

Supporting Information

Supporting Information File 1: Experimental procedures and characterization of compounds.
Format: PDF Size: 936.5 KB Download

Cite the Following Article

Synthesis of quinoline-3-carboxylates by a Rh(II)-catalyzed cyclopropanation-ring expansion reaction of indoles with halodiazoacetates
Magnus Mortén, Martin Hennum and Tore Bonge-Hansen
Beilstein J. Org. Chem. 2015, 11, 1944–1949. https://doi.org/10.3762/bjoc.11.210

How to Cite

Mortén, M.; Hennum, M.; Bonge-Hansen, T. Beilstein J. Org. Chem. 2015, 11, 1944–1949. doi:10.3762/bjoc.11.210

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Chen, Y.; Feng, G.; Shen, Y.; Liu, Z.; Sun, C.; Ji, W.; Huang, H.; Pang, S. Electrochemical Indole Skeletal Editing via Single-Carbon Atom Insertion. Journal of the American Chemical Society 2026. doi:10.1021/jacs.5c19912
  • Wang, Y.; Zhou, X.; Ke, X.; Wang, Y.; Ni, S.; Shi, F. Skeletal Editing of Hydroxyl Oxindoles via Organoiodine‐Catalyzed Oxygen Atom Insertion Reaction. Angewandte Chemie 2025. doi:10.1002/ange.202519764
  • Wang, Y.; Zhou, X.-Z.; Ke, X.-Y.; Wang, Y.; Ni, S.-F.; Shi, F. Skeletal Editing of Hydroxyl Oxindoles via Organoiodine-Catalyzed Oxygen Atom Insertion Reaction. Angewandte Chemie (International ed. in English) 2025, e19764. doi:10.1002/anie.202519764
  • Spreckelmeyer, N.; Kim, J.; Lammert, J.; Horst, E. S.; Zhang, J.; Studer, A. Reductive rearrangement of substituted quinolines to 2,3-disubstituted indoles enabled by water activation. Chemical science 2025. doi:10.1039/d5sc08793g
  • Kafle, P.; Herndon, D.; Sharma, I. Sulfenylcarbenes and sulfenylnitrenes in organic synthesis. Chemical Society reviews 2025, 54, 10344–10362. doi:10.1039/d5cs00278h
  • Wang, Z.; Xu, H.; Han, X.; Zhu, J. Indole ring expansion into quinolines with TMSCCl3/TMSCBr3. Chemical communications (Cambridge, England) 2025, 61, 16400–16403. doi:10.1039/d5cc04994f
  • Yang, Y.; Liu, H.; Wang, Z.; Julaiti, Y.; Lu, Y.; Wan, B.; Wu, X.; Chen, Q. Construction of meta ‐Disubstituted Triaryls via Iodine‐Catalyzed Oxidative Aromatization Coupling of Cycloalkenes with Indoles. Advanced Synthesis & Catalysis 2025, 367. doi:10.1002/adsc.70130
  • Zhou, G.; Yao, Y.; He, X.; Zhang, W.; Liu, S.; Shen, X. Modular synthesis of fluoroalkyl-substituted cyclopropenes with fluoroalkylacylsilanes as carbynyl cation equivalents. Chem 2025, 102721. doi:10.1016/j.chempr.2025.102721
  • Esteve Guasch, J.; Pal, D.; Suero, M. G. Catalytic Oxidative Ligand Transfer of Rh-Carbynoids and Alkyl Iodides. Journal of the American Chemical Society 2025, 147, 31444–31449. doi:10.1021/jacs.5c09559
  • Sarró, P.; Díaz, N.; Esteve Guasch, J.; Teo, W. J.; Suero, M. G. Rh-catalysed single-carbon insertion to 1,3-dienes. Chemical science 2025, 16, 13042–13047. doi:10.1039/d5sc03161c
  • Morimoto, T.; Nishimoto, Y.; Suzuki-Osborne, T.; Chong, S.-G.; Okamoto, K.; Yoneda, T.; Kikuchi, A.; Yokogawa, D.; Atobe, M.; Shida, N. Electrochemical Single-Carbon Insertion via Distonic Radical Cation Intermediates. Journal of the American Chemical Society 2025, 147, 25635–25641. doi:10.1021/jacs.5c06798
  • Li, B.; Alfonso, V. G.; Puggioli, A.; Solé-Daura, A.; Maseras, F.; Suero, M. G. Rh-Catalyzed Atroposelective Single-Carbon Insertion. Journal of the American Chemical Society 2025, 147, 24206–24212. doi:10.1021/jacs.5c06139
  • Köhler, T.; Fuhr, O.; Bräse, S. [2.2]Paracyclophane-substituted quinolines by skeletal editing strategies. Organic Chemistry Frontiers 2025, 12, 3546–3550. doi:10.1039/d5qo00505a
  • Pang, Y.; Wang, E.; Ye, J. Photocatalytic Boron Insertion into Thiaarenes via Boryl Radicals. Angewandte Chemie 2025, 137. doi:10.1002/ange.202508379
  • Pang, Y.; Wang, E.; Ye, J. Photocatalytic Boron Insertion into Thiaarenes via Boryl Radicals. Angewandte Chemie (International ed. in English) 2025, 64, e202508379. doi:10.1002/anie.202508379
  • Zhang, X.; Zhu, Y.; Jiang, W.; Zhang, Z.; Jiang, Y. Skeletal Editing of 6‐(Hetero)arenes via Single‐Carbon‐Atom Insertion. Advanced Synthesis & Catalysis 2025, 367. doi:10.1002/adsc.202500336
  • Liu, L.; Tian, M.; Lang, Z.; Wang, Y.; He, C.; Chen, Y.; Han, W. Indole‐Quinoline Transmutation Enabled by a Formal Rhodium Carbynoid. Angewandte Chemie 2025, 137. doi:10.1002/ange.202501966
  • Liu, L.-J.; Tian, M.-Y.; Lang, Z.-Y.; Wang, Y.-L.; He, C.-Y.; Chen, Y.-Z.; Han, W.-Y. Indole-Quinoline Transmutation Enabled by a Formal Rhodium Carbynoid. Angewandte Chemie (International ed. in English) 2025, 64, e202501966. doi:10.1002/anie.202501966
  • Tyagi, A.; Gaur, K.; Goswami, A.; Seal, A.; Joddar, M.; Jindal, G. A combined experimental and computational study reveals a crossover between conventional cross-coupling and carbene insertion pathways in a Pd catalyzed C(sp2)-H insertion. Chemical science 2025, 16, 6793–6804. doi:10.1039/d5sc00777a
  • Kafle, P.; Herndon, D.; Sharma, I. Sulfenylcarbene-Mediated Carbon Atom Insertion for the Late-Stage Functionalization of N-Heterocycles. Journal of the American Chemical Society 2025, 147, 13824–13832. doi:10.1021/jacs.5c02012
Other Beilstein-Institut Open Science Activities