Continuous formation of N-chloro-N,N-dialkylamine solutions in well-mixed meso-scale flow reactors

A. John Blacker and Katherine E. Jolley
Beilstein J. Org. Chem. 2015, 11, 2408–2417.

Supporting Information

Supporting Information File 1: Details of the titration method for determination of NaOCl strength, determination of amine partition coefficients, GC analytical conditions and calorimetry.
Format: PDF Size: 390.6 KB Download

Cite the Following Article

Continuous formation of N-chloro-N,N-dialkylamine solutions in well-mixed meso-scale flow reactors
A. John Blacker and Katherine E. Jolley
Beilstein J. Org. Chem. 2015, 11, 2408–2417.

How to Cite

Blacker, A. J.; Jolley, K. E. Beilstein J. Org. Chem. 2015, 11, 2408–2417. doi:10.3762/bjoc.11.262

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Polterauer, D.; Roberge, D. M.; Hanselmann, P.; Littich, R.; Hone, C. A.; Kappe, C. O. A continuous flow investigation of sulfonyl chloride synthesis using N-chloroamides: optimization, kinetics and mechanism. Reaction Chemistry & Engineering 2022, 7, 2582–2592. doi:10.1039/d2re00280a
  • Engbers, S.; Hage, R.; Klein, J. E. M. N. Toward Environmentally Benign Electrophilic Chlorinations: From Chloroperoxidase to Bioinspired Isoporphyrins. Inorganic chemistry 2022, 61, 8105–8111. doi:10.1021/acs.inorgchem.2c00602
  • Steiner, A.; de Frutos, O.; Rincón, J. A.; Mateos, C.; Williams, J. D.; Kappe, C. O. N-Chloroamines as substrates for metal-free photochemical atom-transfer radical addition reactions in continuous flow. Reaction Chemistry & Engineering 2021, 6, 2434–2441. doi:10.1039/d1re00429h
  • Sivo, A.; Galaverna, R.; Gomes, G. R.; Pastre, J. C.; Vilé, G. From circular synthesis to material manufacturing: advances, challenges, and future steps for using flow chemistry in novel application area. Reaction Chemistry & Engineering 2021, 6, 756–786. doi:10.1039/d0re00411a
  • Gill, K. K.; Gibson, R.; Yiu, K. H. C.; Hester, P.; Reis, N. M. Microcapillary film reactor outperforms single-bore mesocapillary reactors in continuous flow chemical reactions. Chemical Engineering Journal 2021, 408, 127860. doi:10.1016/j.cej.2020.127860
  • Zhu, Z.; Wang, Z.; Jian, Y.; Sun, H.; Zhang, G.; Lynam, J. M.; McElroy, C. R.; Burden, T. J.; Inight, R. L.; Fairlamb, I. J. S.; Zhang, W.; Gao, Z. Pd-Catalysed carbonylative Suzuki–Miyaura cross-couplings using Fe(CO) 5 under mild conditions: generation of a highly active, recyclable and scalable ‘Pd–Fe’ nanocatalyst. Green Chemistry 2021, 23, 920–926. doi:10.1039/d0gc03036h
  • Jolley, K. E.; Chapman, M. R.; Blacker, A. J. A general and atom-efficient continuous-flow approach to prepare amines, amides and imines via reactive N-chloramines. Beilstein journal of organic chemistry 2018, 14, 2220–2228. doi:10.3762/bjoc.14.196
  • Cosgrove, S. C.; Douglas, G. E.; Raw, S. A.; Marsden, S. P. Continuous Flow for the Photochemical C‐H Amination of Arenes. ChemPhotoChem 2018, 2, 851–854. doi:10.1002/cptc.201800105
  • Chapman, M. R.; Kwan, M. H. T.; King, G. E.; Jolley, K. E.; Hussain, M.; Hussain, S.; Salama, I. E.; Niño, C. G.; Thompson, L. A.; Bayana, M. E.; Clayton, A. D.; Nguyen, B. N.; Turner, N. J.; Kapur, N.; Blacker, A. J. Simple and Versatile Laboratory Scale CSTR for Multiphasic Continuous-Flow Chemistry and Long Residence Times. Organic Process Research & Development 2017, 21, 1294–1301. doi:10.1021/acs.oprd.7b00173
  • Cantillo, D.; Kappe, C. O. Halogenation of organic compounds using continuous flow and microreactor technology. Reaction Chemistry & Engineering 2017, 2, 7–19. doi:10.1039/c6re00186f
Other Beilstein-Institut Open Science Activities