Thiazole formation through a modified Gewald reaction

Carl J. Mallia, Lukas Englert, Gary C. Walter and Ian R. Baxendale
Beilstein J. Org. Chem. 2015, 11, 875–883. https://doi.org/10.3762/bjoc.11.98

Supporting Information

Supporting Information File 1: Experimental and analytical data.
Format: PDF Size: 966.0 KB Download

Cite the Following Article

Thiazole formation through a modified Gewald reaction
Carl J. Mallia, Lukas Englert, Gary C. Walter and Ian R. Baxendale
Beilstein J. Org. Chem. 2015, 11, 875–883. https://doi.org/10.3762/bjoc.11.98

How to Cite

Mallia, C. J.; Englert, L.; Walter, G. C.; Baxendale, I. R. Beilstein J. Org. Chem. 2015, 11, 875–883. doi:10.3762/bjoc.11.98

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Zeng, Q.; Hui, Y.; Wang, Y.; Wen, K.; Huang, J.; Zhang, Y.; Wang, Y.; Zhang, S. An efficient synthesis of 2-aminothiophenes via the Gewald reaction catalyzed by enzymes in ionic liquids. Journal of Molecular Structure 2023, 1294, 136511. doi:10.1016/j.molstruc.2023.136511
  • Prieschl, M.; Sedelmeier, J.; Püntener, K.; Hildbrand, S.; Williams, J. D.; Kappe, C. O. Rediscovering Cyanogen Gas for Organic Synthesis: Formation of 2-Cyanothiazole Derivatives. The Journal of organic chemistry 2023, 88, 9594–9598. doi:10.1021/acs.joc.3c01110
  • Srour, A. M.; Fahmy, H. H.; Khater, M. A.; Zarie, E. S.; Mohamed, S. S.; Abdelhameed, M. F. Synthesis, anti-inflammatory properties, molecular modelling and potential COX-2, TNF-α, PGE2 and IL1β inhibitors of pyrazole-based scaffolds. Journal of Molecular Structure 2022, 1266, 133499. doi:10.1016/j.molstruc.2022.133499
  • Sahil; Kaur, K.; Jaitak, V. Thiazole and Related Heterocyclic Systems as Anticancer Agents: A Review on Synthetic Strategies, Mechanisms of Action and SAR Studies. Current medicinal chemistry 2022, 29, 4958–5009. doi:10.2174/0929867329666220318100019
  • Duc, D. X.; Chung, N. T. Recent Development in the Synthesis of Thiazoles. Current organic synthesis 2022, 19, 702–730. doi:10.2174/1570179419666220216122637
  • doi:10.1002/9783527828166.ch7
  • Röder, L.; Nicholls, A. J.; Baxendale, I. R. Flow Hydrodediazoniation of Aromatic Heterocycles. Molecules (Basel, Switzerland) 2019, 24, 1996. doi:10.3390/molecules24101996
  • Wilk, M.; Trzepizur, D.; Koszelewski, D.; Brodzka, A.; Ostaszewski, R. Synthesis of (E)-α,β-unsaturated carboxylic esters derivatives from cyanoacetic acid via promiscuous enzyme-promoted cascade esterification/Knoevenagel reaction. Bioorganic chemistry 2019, 93, 102816. doi:10.1016/j.bioorg.2019.02.041
  • Nayak, S.; Gaonkar, S. L. A Review on Recent Synthetic Strategies and Pharmacological Importance of 1,3-Thiazole Derivatives. Mini reviews in medicinal chemistry 2019, 19, 215–238. doi:10.2174/1389557518666180816112151
  • Fadda, A. A.; Tawfik, E. H.; Selim, Y. A. Synthesis and Biological Evaluation of Some New Thiophene, Thiazole, Dithiolane Derivatives and Related Compounds. Polycyclic Aromatic Compounds 2018, 40, 1445–1458. doi:10.1080/10406638.2018.1555174
  • Isadora, S. L.; da Cruz Rayssa, M. D.; da Cruz Ryldene Marques, D.; de Araújo Rodrigo, S. A.; Francisco, J. B. M.-J. 1,4-Dithiane-2,5-diol: A Versatile Synthon for the Synthesis of Sulfur-containing Heterocycles. Current Organic Synthesis 2018, 15, 1026–1042. doi:10.2174/1570179415666180821154551
  • Zamberlan, F.; Fantinati, A.; Trapella, C. 1,4‐Dithiane‐2,5‐diol: An Attractive Platform for the Synthesis of Sulfur Containing Functionalized Heterocycles. European Journal of Organic Chemistry 2018, 2018, 3248–3264. doi:10.1002/ejoc.201701785
  • Hu, C.; Hong, G.; Qian, X.; Kim, K. R.; Zhu, X.; Wang, L. AlCl3 catalyzed coupling of N-benzylic sulfonamides with 2-substituted cyanoacetates through carbon–nitrogen bond cleavage. Organic & biomolecular chemistry 2017, 15, 4984–4991. doi:10.1039/c7ob01025g
  • Reddy, G. V. S.; Chandrappa, M.; Gowda, V. N. P.; Rahaman, F.; Kumar, S. G.; Murthy, B. N.; Pullela, P. K. Efficient bulk scale synthesis of popular pesticide synthon: tetrachlorothiophene. Catalysis, Structure & Reactivity 2017, 3, 138–145. doi:10.1080/2055074x.2017.1327472
  • Kumara, C. S. P.; Gowda, G. B.; Kumar, K. V.; Ramesh, N.; Sadashiva, M. P.; Junjappa, H. Base catalyzed reaction of 1,4-dithiane-2,5-diol with α-oxoketene dithioacetals: a new general method for the synthesis of 2-methylthio-3-aroyl/heteroaroyl thiophenes. Tetrahedron Letters 2016, 57, 4302–4305. doi:10.1016/j.tetlet.2016.08.033
  • Du, J.; Tao, M.; Zhang, W. Fiber-Supported Acid–Base Bifunctional Catalysts for Efficient Nucleophilic Addition in Water. ACS Sustainable Chemistry & Engineering 2016, 4, 4296–4304. doi:10.1021/acssuschemeng.6b00785
  • Wu, Y.-J. Five-Membered Ring Systems: With N and S Atom. Progress in Heterocyclic Chemistry 2016, 28, 317–339. doi:10.1016/b978-0-08-100755-6.00009-0
  • Mallia, C. J.; Englert, L.; Walter, G. C.; Baxendale, I. R. Thiazole Formation Through a Modified Gewald Reaction. ChemInform 2015, 46. doi:10.1002/chin.201533173
  • Mallia, C. J.; Englert, L.; Walter, G. C.; Baxendale, I. R. Ethyl 2-hydroxy-2-phenyl-2-(thiazol-2-yl)acetate. Molbank 2015, 2015, M857. doi:10.3390/m857

Patents

  • BECK HARTMUT; KAST RAIMUND; MEININGHAUS MARK; DIETZ LISA; FÜRSTNER CHANTAL; STELLFELD TIMO; ANLAUF SONJA; VON BÜHLER CLEMENS-JEREMIAS; BAIRLEIN MICHAELA; MOSIG JOHANNA; MÜNSTER UWE; TERJUNG CARSTEN; JÖRISSEN HANNAH; HAUFF PETER; MÜLLER JÖRG; DRÖBNER KAROLINE; NAGEL JENS. SUBSTITUTED N-ARYLETHYL-2-ARYLQUINOLINE-4-CARBOXAMIDES AND USE THEREOF. WO 2018189011 A1, Oct 18, 2018.
Other Beilstein-Institut Open Science Activities