The role of alkyl substituents in deazaadenine-based diarylethene photoswitches

Christopher Sarter, Michael Heimes and Andres Jäschke
Beilstein J. Org. Chem. 2016, 12, 1103–1110. https://doi.org/10.3762/bjoc.12.106

Supporting Information

Supporting Information File 1: Experimental part and additional spectra of investigated compounds.
Format: PDF Size: 3.2 MB Download

Cite the Following Article

The role of alkyl substituents in deazaadenine-based diarylethene photoswitches
Christopher Sarter, Michael Heimes and Andres Jäschke
Beilstein J. Org. Chem. 2016, 12, 1103–1110. https://doi.org/10.3762/bjoc.12.106

How to Cite

Sarter, C.; Heimes, M.; Jäschke, A. Beilstein J. Org. Chem. 2016, 12, 1103–1110. doi:10.3762/bjoc.12.106

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 588.3 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Bargstedt, J.; Reinschmidt, M.; Tydecks, L.; Kolmar, T.; Hendrich, C. M.; Jäschke, A. Photochromic Nucleosides and Oligonucleotides. Angewandte Chemie 2023, 136. doi:10.1002/ange.202310797
  • Bargstedt, J.; Reinschmidt, M.; Tydecks, L.; Kolmar, T.; Hendrich, C. M.; Jäschke, A. Photochromic Nucleosides and Oligonucleotides. Angewandte Chemie (International ed. in English) 2023, 63, e202310797. doi:10.1002/anie.202310797
  • Maafi, M. On photokinetics under monochromatic light. Frontiers in chemistry 2023, 11, 1233151. doi:10.3389/fchem.2023.1233151
  • Semionova, V. V.; Glebov, E. M. SUPRAMOLECULAR COMPOUNDS FORMED BY METAL-ORGANIC FRAMEWORKS AND ORGANIC PHOTOCHROMES. REVIEW. Journal of Structural Chemistry 2022, 63, 1453–1483. doi:10.1134/s0022476622090086
  • Wagenknecht, H. doi:10.1002/9783527827626.ch39
  • Orlioglo, B. M.; Kovalenko, K. A.; Glebov, E. M. INCLUSION COMPOUNDS OF ORGANIC AZOCHROMOPHORES IN THE CAVITIES OF METAL-ORGANIC FRAMEWORKS (Cr, Al)– MIL-101: SYNTHESIS AND PHOTOCHEMICAL STUDIES. Journal of Structural Chemistry 2022, 63, 152–163. doi:10.1134/s0022476622010152
  • Büllmann, S. M.; Kolmar, T.; Zorn, N. F.; Zaumseil, J.; Jäschke, A. Ein DNA‐basierter exzitonischer Zweikomponenten‐Schalter auf der Grundlage von Hochleistungs‐Diarylethenen. Angewandte Chemie 2022, 134. doi:10.1002/ange.202117735
  • Büllmann, S. M.; Kolmar, T.; Zorn, N. F.; Zaumseil, J.; Jäschke, A. A DNA-Based Two-Component Excitonic Switch Utilizing High-Performance Diarylethenes. Angewandte Chemie (International ed. in English) 2022, 61, e202117735. doi:10.1002/anie.202117735
  • Maafi, M.; Alqarni, M. Mono- and polychromatic light diarylethene-actinometer for the visible range. Dyes and Pigments 2022, 198, 109942. doi:10.1016/j.dyepig.2021.109942
  • Kolmar, T.; Becker, A.; Pfretzschner, R. A.; Lelke, A.; Jäschke, A. Development of Red-Shifted and Fluorogenic Nucleoside and Oligonucleotide Diarylethene Photoswitches. Chemistry (Weinheim an der Bergstrasse, Germany) 2021, 27, 17386–17394. doi:10.1002/chem.202103133
  • Büllmann, S. M.; Kolmar, T.; Slawetzky, P.; Wald, S.; Jäschke, A. Optochemical control of transcription by the use of 7-deaza-adenosine-based diarylethenes. Chemical communications (Cambridge, England) 2021, 57, 6596–6599. doi:10.1039/d1cc02639a
  • Kolmar, T.; Büllmann, S. M.; Sarter, C.; Höfer, K.; Jäschke, A. Development of High‐Performance Pyrimidine Nucleoside and Oligonucleotide Diarylethene Photoswitches. Angewandte Chemie (International ed. in English) 2021, 60, 8164–8173. doi:10.1002/anie.202014878
  • Kolmar, T.; Büllmann, S. M.; Sarter, C.; Höfer, K.; Jäschke, A. Development of High‐Performance Pyrimidine Nucleoside and Oligonucleotide Diarylethene Photoswitches. Angewandte Chemie 2021, 133, 8245–8254. doi:10.1002/ange.202014878
  • Lvov, A. G. Switching the Mallory Reaction to Synthesis of Naphthalenes, Benzannulated Heterocycles, and Their Derivatives. The Journal of organic chemistry 2020, 85, 8749–8759. doi:10.1021/acs.joc.0c00924
  • Zhang, J.; Zhou, Y.; Yao, Y.; Cheng, Z.; Gao, T.; Li, H.; Yan, P. A light triggered optical and chiroptical switch based on a homochiral Eu2L3 helicate. Journal of Materials Chemistry C 2020, 8, 6788–6796. doi:10.1039/d0tc01044h
  • Oplachko, M. V.; Smolentsev, A. B.; Magin, I. M.; Pozdnyakov, I. P.; Nichiporenko, V. A.; Grivin, V. P.; Plyusnin, V. F.; Vyazovkin, V. V.; Yanshole, V. V.; Parkhats, M. V.; Yadykov, A. V.; Shirinian, V. Z.; Glebov, E. M. Mechanism of photochromic transformations and photodegradation of an asymmetrical 2,3-diarylcyclopentenone. Physical chemistry chemical physics : PCCP 2020, 22, 5220–5228. doi:10.1039/c9cp05744g
  • Sarter, C.; Dey, S.; Jäschke, A. Photoswitchable Oligonucleotides Containing Different Diarylethene-Modified Nucleotides. ACS omega 2019, 4, 12125–12129. doi:10.1021/acsomega.9b01070
  • Kellis, D. L.; Sarter, C.; Cannon, B. L.; Davis, P. H.; Graugnard, E.; Lee, J.; Pensack, R. D.; Kolmar, T.; Jäschke, A.; Yurke, B.; Knowlton, W. B. An All-Optical Excitonic Switch Operated in the Liquid and Solid Phases. ACS nano 2019, 13, 2986–2994. doi:10.1021/acsnano.8b07504
  • Huang, X.-Q.; Fan, C.-B.; Liu, G.; Pu, S.-Z. Synthesis and the effect of alkyl chain length on photochromic properties of diarylethene derivatives. Tetrahedron 2019, 75, 784–790. doi:10.1016/j.tet.2018.12.063
  • Lvov, A. G.; Alexeeva, A. M.; Lvova, E. A.; Krayushkin, M. M.; Shirinian, V. Z. Spectral properties and structure of unsymmetrical diarylethenes based on thiazole ring with hydrogen at the reactive carbon. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy 2018, 203, 348–356. doi:10.1016/j.saa.2018.05.097
Other Beilstein-Institut Open Science Activities