Artificial Diels–Alderase based on the transmembrane protein FhuA

Hassan Osseili, Daniel F. Sauer, Klaus Beckerle, Marcus Arlt, Tomoki Himiyama, Tino Polen, Akira Onoda, Ulrich Schwaneberg, Takashi Hayashi and Jun Okuda
Beilstein J. Org. Chem. 2016, 12, 1314–1321. https://doi.org/10.3762/bjoc.12.124

Supporting Information

Supporting Information File 1: Illustration of the catalyst 2 and NMR spectra of synthesized compounds.
Format: PDF Size: 1.2 MB Download

Cite the Following Article

Artificial Diels–Alderase based on the transmembrane protein FhuA
Hassan Osseili, Daniel F. Sauer, Klaus Beckerle, Marcus Arlt, Tomoki Himiyama, Tino Polen, Akira Onoda, Ulrich Schwaneberg, Takashi Hayashi and Jun Okuda
Beilstein J. Org. Chem. 2016, 12, 1314–1321. https://doi.org/10.3762/bjoc.12.124

How to Cite

Osseili, H.; Sauer, D. F.; Beckerle, K.; Arlt, M.; Himiyama, T.; Polen, T.; Onoda, A.; Schwaneberg, U.; Hayashi, T.; Okuda, J. Beilstein J. Org. Chem. 2016, 12, 1314–1321. doi:10.3762/bjoc.12.124

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 990.3 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Klemencic, E.; Brewster, R. C.; Ali, H. S.; Richardson, J. M.; Jarvis, A. G. Using BpyAla to generate copper artificial metalloenzymes: a catalytic and structural study. Catalysis Science & Technology 2024. doi:10.1039/d3cy01648j
  • Sauer, D. F.; Markel, U.; Schiffels, J.; Okuda, J.; Schwaneberg, U. FhuA: From Iron-Transporting Transmembrane Protein to Versatile Scaffolds through Protein Engineering. Accounts of chemical research 2023, 56, 1433–1444. doi:10.1021/acs.accounts.3c00060
  • Hanreich, S.; Bonandi, E.; Drienovská, I. Design of Artificial Enzymes: Insights into Protein Scaffolds. Chembiochem : a European journal of chemical biology 2023, 24, e202200566. doi:10.1002/cbic.202200566
  • Aho, J. A.; Deska, J. Novel enzymatic tools for C–C bond formation through the development of new-to-nature biocatalysis. Enantioselective C-C Bond Forming Reactions: From Metal Complex-, Organo-, and Bio-catalyzed Perspectives; Elsevier, 2023; pp 277–324. doi:10.1016/bs.acat.2023.07.005
  • Mastachi-Loza, S.; Ramírez-Candelero, T. I.; Benítez-Puebla, L. J.; Fuentes-Benítes, A.; González-Romero, C.; Vázquez, M. A. Chalcones, a Privileged Scaffold: Highly Versatile Molecules in [4+2] Cycloadditions. Chemistry, an Asian journal 2022, 17, e202200706. doi:10.1002/asia.202200706
  • Van Stappen, C.; Deng, Y.; Liu, Y.; Heidari, H.; Wang, J.-X.; Zhou, Y.; Ledray, A. P.; Lu, Y. Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere. Chemical reviews 2022, 122, 11974–12045. doi:10.1021/acs.chemrev.2c00106
  • Liu, Y.; Lai, K. L.; Vong, K. Transition Metal Scaffolds Used To Bring New‐to‐Nature Reactions into Biological Systems. European Journal of Inorganic Chemistry 2022, 2022. doi:10.1002/ejic.202200215
  • Burgener, S.; Zhang, X.; Ward, T. R. Artificial Metalloenzymes for Enantioselective Catalysis. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier, 2022. doi:10.1016/b978-0-32-390644-9.00082-2
  • Sauer, D. F.; Wittwer, M.; Markel, U.; Minges, A.; Spiertz, M.; Schiffels, J.; Davari, M. D.; Groth, G.; Okuda, J.; Schwaneberg, U. Chemogenetic engineering of nitrobindin toward an artificial epoxygenase. Catalysis Science & Technology 2021, 11, 4491–4499. doi:10.1039/d1cy00609f
  • Thiel, A.; Sauer, D. F.; Markel, U.; Mertens, M. A. S.; Polen, T.; Schwaneberg, U.; Okuda, J. An artificial ruthenium-containing β-barrel protein for alkene–alkyne coupling reaction. Organic & biomolecular chemistry 2021, 19, 2912–2916. doi:10.1039/d1ob00279a
  • Vong, K.; Nasibullin, I.; Tanaka, K. Exploring and Adapting the Molecular Selectivity of Artificial Metalloenzymes. Bulletin of the Chemical Society of Japan 2020, 94, 382–396. doi:10.1246/bcsj.20200316
  • Ghattas, W.; Mahy, J.-P.; Réglier, M.; Simaan, A. J. Artificial Enzymes for Diels-Alder Reactions. Chembiochem : a European journal of chemical biology 2020, 22, 443–459. doi:10.1002/cbic.202000316
  • Garakani, T. M.; Sauer, D. F.; Mertens, M. A. S.; Lazar, J.; Gehrmann, J.; Arlt, M.; Schiffels, J.; Schnakenberg, U.; Okuda, J.; Schwaneberg, U. FhuA–Grubbs–Hoveyda Biohybrid Catalyst Embedded in a Polymer Film Enables Catalysis in Neat Substrates. ACS Catalysis 2020, 10, 10946–10953. doi:10.1021/acscatal.0c03055
  • Jeong, W. J.; Yu, J.; Song, W. J. Proteins as diverse, efficient, and evolvable scaffolds for artificial metalloenzymes. Chemical communications (Cambridge, England) 2020, 56, 9586–9599. doi:10.1039/d0cc03137b
  • Himiyama, T.; Okamoto, Y. Artificial Metalloenzymes: From Selective Chemical Transformations to Biochemical Applications. Molecules (Basel, Switzerland) 2020, 25, 2989. doi:10.3390/molecules25132989
  • Tang, Z.; Wang, H.; Liu, W. Enzyme-Associated Pericyclic Reactions. Comprehensive Natural Products III; Elsevier, 2020; pp 187–227. doi:10.1016/b978-0-12-409547-2.14682-7
  • Imam, H. T.; Jarvis, A. G.; Celorrio, V.; Baig, I.; Allen, C. C. R.; Marr, A. C.; Kamer, P. C. J. Catalytic and biophysical investigation of rhodium hydroformylase. Catalysis Science & Technology 2019, 9, 6428–6437. doi:10.1039/c9cy01679a
  • Ghattas, W.; Dubosclard, V.; Tachon, S.; Beaumet, M.; Guillot, R.; Réglier, M.; Simaan, A. J.; Mahy, J.-P. CuII‐Containing 1‐Aminocyclopropane Carboxylic Acid Oxidase Is an Efficient Stereospecific Diels–Alderase. Angewandte Chemie (International ed. in English) 2019, 58, 14605–14609. doi:10.1002/anie.201909407
  • Ghattas, W.; Dubosclard, V.; Tachon, S.; Beaumet, M.; Guillot, R.; Réglier, M.; Simaan, A. J.; Mahy, J. CuII‐Containing 1‐Aminocyclopropane Carboxylic Acid Oxidase Is an Efficient Stereospecific Diels–Alderase. Angewandte Chemie 2019, 131, 14747–14751. doi:10.1002/ange.201909407
  • Mansot, J.; Vasseur, J.-J.; Arseniyadis, S.; Smietana, M. α,β‐Unsaturated 2‐Acyl‐Imidazoles in Asymmetric Biohybrid Catalysis. ChemCatChem 2019, 11, 5686–5704. doi:10.1002/cctc.201900743

Patents

  • SCHWANEBERG ULRICH; OKUDA JUN; SAUER DANIEL; ARLT MARCUS; ZHU LEILEI; BOCOLA MARCO; GRIMM ALEXANDER; MERTENS ALAN. WHOLE CELL-BASED BIOHYBRID CATALYST SYSTEMS. EP 3348326 A1, July 18, 2018.
Other Beilstein-Institut Open Science Activities