Supporting Information
| Supporting Information File 1: Experimental procedures and characterization data; crystallographic information for 9; 1H, 11B, 13C and 31P NMR spectra. | ||
| Format: PDF | Size: 1.2 MB | Download |
| Supporting Information File 2: CIF file of 9, CCDC 1471929. | ||
| Format: CIF | Size: 22.5 KB | Download |
Cite the Following Article
A T-shape diphosphinoborane palladium(0) complex
Patrick Steinhoff and Michael E. Tauchert
Beilstein J. Org. Chem. 2016, 12, 1573–1576.
https://doi.org/10.3762/bjoc.12.152
How to Cite
Steinhoff, P.; Tauchert, M. E. Beilstein J. Org. Chem. 2016, 12, 1573–1576. doi:10.3762/bjoc.12.152
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 473.4 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Riddlestone, I. M. Preparation and reactivity of compounds containing group 10–group 13 element bonds. Organometallic Chemistry; Royal Society of Chemistry, 2024; pp 35–72. doi:10.1039/9781837676200-00035
- Zhu, L.; Zhao, B.; Xie, K.; Gui, W.-T.; Niu, S.-L.; Zheng, P.-F.; Chen, Y.-C.; Qi, X.-W.; Ouyang, Q. Metal π-Lewis base activation in palladium(0)-catalyzed trans-alkylative cyclization of alkynals. Chemical science 2024, 15, 13032–13040. doi:10.1039/d4sc04190a
- Wehmeyer, F.-U.; Langer, R. A hampered oxidative addition of pre-coordinated pincer ligands can favour alternative pathways of activation. Chemical communications (Cambridge, England) 2023, 59, 6004–6007. doi:10.1039/d3cc00874f
- Eltester, M. A.; Gildenast, H.; Rabatinová, K.; Pütz, C.; Cremer, C.; Lanzerath, P.; Schroers, J. P.; Tauchert, M. E. Au → M bonds promote catalytic alkyne hydrofunctionalisation. Chemical communications (Cambridge, England) 2023, 59, 5459–5462. doi:10.1039/d3cc01008b
- Schroers, J. P.; Kliemann, M. N.; Kollath, J. M. A.; Tauchert, M. E. How Cationic Metalloligands Affect the Coordination of Lewis Basic Ligands in RhI Complexes. Organometallics 2021, 40, 3893–3906. doi:10.1021/acs.organomet.1c00449
- Cabeza, J. A.; Fernández, I.; García-Álvarez, P.; García-Soriano, R.; Laglera-Gándara, C. J.; Toral, R. Stannylenes based on pyrrole-phosphane and dipyrromethane-diphosphane scaffolds: syntheses and behavior as precursors to PSnP pincer palladium(II), palladium(0) and gold(I) complexes. Dalton transactions (Cambridge, England : 2003) 2021, 50, 16122–16132. doi:10.1039/d1dt02967c
- Furan, S.; Molkenthin, M.; Winkels, K.; Lork, E.; Mebs, S.; Hupf, E.; Beckmann, J. Tris(6-diphenylphosphinoacenaphth-5-yl)gallium: Z-Type Ligand and Transmetalation Reagent. Organometallics 2021, 40, 3785–3796. doi:10.1021/acs.organomet.1c00522
- Huynh, W.; Taylor, J. W.; Harman, W. H.; Conley, M. P. Solid-state 11B NMR studies of coinage metal complexes containing a phosphine substituted diboraanthracene ligand. Dalton transactions (Cambridge, England : 2003) 2021, 50, 14855–14863. doi:10.1039/d1dt02981a
- Boudjelel, M.; Sadek, O.; Mallet-Ladeira, S.; García-Rodeja, Y.; Carrizo, E. D. S.; Miqueu, K.; Bouhadir, G.; Bourissou, D. Phosphine–Borane Ligands Induce Chemoselective Activation and Catalytic Coupling of Acyl Chlorides at Palladium. ACS Catalysis 2021, 11, 3822–3829. doi:10.1021/acscatal.0c04287
- Tiddens, M. R.; Moret, M.-E. Metal-Ligand Cooperation at Phosphine-Based Acceptor Pincer Ligands. Topics in Organometallic Chemistry; Springer Berlin Heidelberg, 2020; pp 25–69. doi:10.1007/3418_2020_70
- Cabeza, J. A.; García-Álvarez, P.; Laglera-Gándara, C. J.; Pérez-Carreño, E. A Z-type PGeP pincer germylene ligand in a T-shaped palladium(0) complex. Chemical communications (Cambridge, England) 2020, 56, 14095–14097. doi:10.1039/d0cc06614a
- Ritter, F.; John, L.; Schindler, T.; Schroers, J. P.; Teeuwen, S.; Tauchert, M. E. Evaluation of Pd→B Interactions in Diphosphinoborane Complexes and Impact on Inner-Sphere Reductive Elimination. Chemistry (Weinheim an der Bergstrasse, Germany) 2020, 26, 13436–13444. doi:10.1002/chem.202001189
- Vogt, M.; Langer, R. The Pincer Platform Beyond Classical Coordination Patterns. European Journal of Inorganic Chemistry 2020, 2020, 3885–3898. doi:10.1002/ejic.202000513
- Kameo, H.; Yamamoto, J.; Asada, A.; Nakazawa, H.; Matsuzaka, H.; Bourissou, D. Palladium–Borane Cooperation: Evidence for an Anionic Pathway and Its Application to Catalytic Hydro‐/Deutero‐dechlorination. Angewandte Chemie 2019, 131, 18959–18963. doi:10.1002/ange.201909675
- Kameo, H.; Yamamoto, J.; Asada, A.; Nakazawa, H.; Matsuzaka, H.; Bourissou, D. Palladium-Borane Cooperation: Evidence for an Anionic Pathway and Its Application to Catalytic Hydro-/Deutero-dechlorination. Angewandte Chemie (International ed. in English) 2019, 58, 18783–18787. doi:10.1002/anie.201909675
- Cao, Y.; Shih, W.-C.; Bhuvanesh, N.; Ozerov, O. V. Silver halide complexes of a borane/bis(phosphine) ligand. Dalton transactions (Cambridge, England : 2003) 2019, 48, 9959–9961. doi:10.1039/c9dt02100k
- Hill, A. F.; Schwich, T.; Xiong, Y. 5-Mercaptotetrazolyl-derived metallaboratranes. Dalton transactions (Cambridge, England : 2003) 2019, 48, 2367–2376. doi:10.1039/c8dt05036h
- Ma, C.; Hill, A. F. Methimazolyl based diptych bicyclo-[3.3.0]-ruthenaboratranes. Dalton transactions (Cambridge, England : 2003) 2019, 48, 1976–1992. doi:10.1039/c8dt04813d
- Steinhoff, P.; Paul, M.; Schroers, J. P.; Tauchert, M. E. Highly efficient palladium-catalysed carbon dioxide hydrosilylation employing PMP ligands. Dalton transactions (Cambridge, England : 2003) 2019, 48, 1017–1022. doi:10.1039/c8dt03777a
- St J. Foreman, M. R.; Hill, A. F.; Ma, C.; Tshabang, N.; White, A. J. P. Synthesis and ligand substitution reactions of κ4-B,S,S',S''-ruthenaboratranes. Dalton transactions (Cambridge, England : 2003) 2018, 48, 209–219. doi:10.1039/c8dt04278k