Solvent-free, visible-light photocatalytic alcohol oxidations applying an organic photocatalyst

Martin Obst and Burkhard König
Beilstein J. Org. Chem. 2016, 12, 2358–2363.

Supporting Information

Supporting Information File 1: Video showing the rod mill apparatus and the procedure of loading and reaction.
Format: MP4 Size: 63.4 MB Download

Cite the Following Article

Solvent-free, visible-light photocatalytic alcohol oxidations applying an organic photocatalyst
Martin Obst and Burkhard König
Beilstein J. Org. Chem. 2016, 12, 2358–2363.

How to Cite

Obst, M.; König, B. Beilstein J. Org. Chem. 2016, 12, 2358–2363. doi:10.3762/bjoc.12.229

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 233.3 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Kumar, G.; Bhargava, G.; Kumar, S.; Rajput, J. K.; Singh, B.; Singh, P.; Kumar, R. Advancements in visible-light-induced oxidation of aromatic alcohols: Insights into photo-redox transformative pathways. Inorganica Chimica Acta 2024, 563, 121935. doi:10.1016/j.ica.2024.121935
  • Millward, F.; Zysman-Colman, E. Mechanophotocatalysis: A Generalizable Approach to Solvent-minimized Photocatalytic Reactions for Organic Synthesis. Angewandte Chemie (International ed. in English) 2024, 63, e202316169. doi:10.1002/anie.202316169
  • Millward, F.; Zysman‐Colman, E. Mechanophotocatalysis: A Generalizable Approach to Solvent‐minimized Photocatalytic Reactions for Organic Synthesis. Angewandte Chemie 2024, 136. doi:10.1002/ange.202316169
  • Shaoo, B. M.; Banik, B. K. Solvent-less reactions: green and sustainable approaches in medicinal chemistry. Green Approaches in Medicinal Chemistry for Sustainable Drug Design; Elsevier, 2024; pp 387–408. doi:10.1016/b978-0-443-16164-3.00017-0
  • Vittal, J. J. [2 + 2] photocycloaddition reaction as a tool to monitor the molecular motions in the solid state by mechanochemical grinding. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2023, 57, 100636. doi:10.1016/j.jphotochemrev.2023.100636
  • Yu, H.; Xu, F. Non-noble metal-catalyzed cross-dehydrogenation coupling (CDC) involving ether α-C(sp3)-H to construct C-C bonds. Beilstein journal of organic chemistry 2023, 19, 1259–1288. doi:10.3762/bjoc.19.94
  • Baier, D. M.; Spula, C.; Fanenstich, S.; Grätz, S.; Borchardt, L. The Regioselective Solid-State Photo-Mechanochemical Synthesis of Nanographenes with UV light. Angewandte Chemie (International ed. in English) 2023, 62, e202218719. doi:10.1002/anie.202218719
  • Baier, D. M.; Spula, C.; Fanenstich, S.; Grätz, S.; Borchardt, L. UV‐Licht trifft Mechanochemie: Die Regioselektive Photochemische Festkörpersynthese von Nanographenen. Angewandte Chemie 2023, 135. doi:10.1002/ange.202218719
  • Martinez, V.; Stolar, T.; Karadeniz, B.; Brekalo, I.; Užarević, K. Advancing mechanochemical synthesis by combining milling with different energy sources. Nature reviews. Chemistry 2022, 7, 51–65. doi:10.1038/s41570-022-00442-1
  • Ávila‐Ortiz, C. G.; Vega‐Peñaloza, A.; Juaristi, E. doi:10.1002/9783527832217.ch13
  • Sahoo, B. M.; Kumar, B. R.; Panda, K. C.; Sruti, J.; Tiwari, A.; Patra, S. Green and Sustainable Technology: Efficient Strategy for the Synthesis of Biologically Active Pyrimidine Derivatives. Current Organocatalysis 2022, 9, 34–45. doi:10.2174/2213337208666211006143134
  • Torregrosa-Chinillach, A.; Chinchilla, R. Visible Light-Induced Aerobic Oxidative Dehydrogenation of C-N/C-O to C=N/C=O Bonds Using Metal-Free Photocatalysts: Recent Developments. Molecules (Basel, Switzerland) 2022, 27, 497. doi:10.3390/molecules27020497
  • Schumacher, C.; Molitor, C.; Smid, S.; Truong, K.-N.; Rissanen, K.; Bolm, C. Mechanochemical Syntheses of N-Containing Heterocycles with TosMIC. The Journal of organic chemistry 2021, 86, 14213–14222. doi:10.1021/acs.joc.1c01529
  • Buglioni, L.; Raymenants, F.; Slattery, A.; Zondag, S. D. A.; Noël, T. Technological Innovations in Photochemistry for Organic Synthesis: Flow Chemistry, High-Throughput Experimentation, Scale-up, and Photoelectrochemistry. Chemical reviews 2021, 122, 2752–2906. doi:10.1021/acs.chemrev.1c00332
  • Espro, C.; Rodríguez-Padrón, D. Re-thinking organic synthesis: Mechanochemistry as a greener approach. Current Opinion in Green and Sustainable Chemistry 2021, 30, 100478. doi:10.1016/j.cogsc.2021.100478
  • Zhang, H.; Guo, T.; Wu, M.; Huo, X.; Tang, S.; Wang, X.; Liu, J. 4CzIPN catalyzed photochemical oxidation of benzylic alcohols. Tetrahedron Letters 2021, 67, 152878. doi:10.1016/j.tetlet.2021.152878
  • Wang, H.; Ying, P.; Yu, J.; Su, W. Alternative Strategies Enabling Cross-Dehydrogenative Coupling: Access to C—C Bonds. Chinese Journal of Organic Chemistry 2021, 1897. doi:10.6023/cjoc202009053
  • Poliakoff, M.; George, M. W. Manufacturing chemicals with light: any role in the circular economy?. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences 2020, 378, 20190260. doi:10.1098/rsta.2019.0260
  • Margetić, D.; Štrukil, V. Recent Advances in Mechanochemical Organic Synthesis. Organic Synthesis [Working Title]; IntechOpen, 2020. doi:10.5772/intechopen.90897
  • Nikitas, N. F.; Tzaras, D. I.; Triandafillidi, I.; Kokotos, C. G. Photochemical oxidation of benzylic primary and secondary alcohols utilizing air as the oxidant. Green Chemistry 2020, 22, 471–477. doi:10.1039/c9gc03000j
Other Beilstein-Institut Open Science Activities