Construction of bis-, tris- and tetrahydrazones by addition of azoalkenes to amines and ammonia

  1. Artem N. Semakin1,2,
  2. Aleksandr O. Kokuev2,
  3. Yulia V. Nelyubina3,
  4. Alexey Yu. Sukhorukov1,
  5. Petr A. Zhmurov1,
  6. Sema L. Ioffe1,2 and
  7. Vladimir A. Tartakovsky1

1Laboratory of functional organic compounds, N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospect, 47, Moscow, 119991, Russia
2Moscow Chemical Lyceum 1303, Tamozhenniy proezd, 4, Moscow, 111033, Russia
3Laboratory for X-Ray Diffraction Studies, A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova Str. 28, Moscow, 119991, Russia

  1. Corresponding author email

Associate Editor: J. P. Wolfe
Beilstein J. Org. Chem. 2016, 12, 2471–2477.
Received 12 Sep 2016, Accepted 03 Nov 2016, Published 21 Nov 2016


Exhaustive Michael-type alkylations of amines and ammonia with azoalkenes (generated from α-halohydrazones) were demonstrated as an efficient approach to poly(hydrazonomethyl)amines – a novel class of polynitrogen ligands. An intramolecular cyclotrimerization of C=N bonds in tris(hydrazonomethyl)amine to the respective 1,4,6,10-tetraazaadamantane derivative was demonstrated.

Keywords: azoalkenes; α-halogen hydrazones; heterocage compounds; hydrazone ligands; Michael addition


Hydrazones are extensively used as key structural units in the design of various functional molecular and supramolecular architectures [1-17]. The hydrazone group is a chemically stable, easily assembled motif with prospective coordination properties, which can be tuned by substitution at the carbon and nitrogen atoms. Furthermore, a reversible E/Z-isomerism of the C=N bond allows controllable modulation of the molecular geometry, for example through coordination with metal cations, hydrogen bond formation or irradiation. These unique structural features of the hydrazone fragment have been successfully exploited in the design of various molecular switches, fluorophores and machines.

Bis- and polyhydrazones exhibit a rich coordination chemistry owing to a variety of binding modes and are widely employed as ligands in metal-organic assemblies, sensors and catalytic systems [1-17]. More complex structures containing several hydrazone groups integrated with functional fragments upon coordination with metals can undergo significant changes in molecular shape and aggregation state that can be used in the design of smart adaptive materials [1,2]. Some important bis- and trishydrazone ligands used in catalysis, coordination and supramolecular chemistry are shown in Figure 1.


Figure 1: Selected examples of polyhydrazones.

Despite complex and sophisticated polyhydrazone ligands have been designed in the last decade, more structurally simple poly(hydrazonomethyl)amines of type I (Scheme 1), which are analogs of well-known poly(oximinomethyl)amine and poly(azolylmethyl)amine ligands [18-34], have not been prepared so far. In the present work, we focused on the development of a general approach to tertiary amines and polyamines bearing several hydrazonomethyl arms at the nitrogen atom(s). To achieve this goal, we suggested a straightforward methodology based on multiple Michael-type additions of azoalkenes A (generated from α-halogen azacarbonyl precursor 1 [35-39]) to amines or ammonia (Scheme 1).


Scheme 1: Proposed approach to the synthesis of I.

Though the chemistry and synthetic potential azoalkenes A have been a subject of considerable interest in the recent years [38,39], their reactivity with amines is poorly explored. It has been demonstrated that amines react with azoalkenes A forming α-aminohydrazones (Scheme 1) [35-49], however, addition of several azoalkene molecules to amines is virtually unknown. To our knowledge, there is only one report on the formation of bishydrazones as undesirable products in reactions of some primary amines with N-tosylhydrazone of o-bromophenacyl bromide [50]. We suppose that extension of the scope of azoalkene–amine coupling to ammonia, primary amines and polyamines would open an easy access to various polyhydrazones of type I. Therefore, a comprehensive study on the interaction of various amines with α-halogen-substituted hydrazones 1 with amines and ammonia was undertaken.

Results and Discussion

Synthesis of α-halogen-substituted hydrazones 1

Initially, α-halogen-substituted hydrazones 1 were prepared from the corresponding carbonyl compounds and acylhydrazines or carbazates to study the reaction with amines (Scheme 2, for details see Supporting Information File 1). Acetic acid was added as catalyst and for suppression of the side reaction of the formed α-halogen hydrazones with starting hydrazide [51]. The presence of acetic acid and mild reaction conditions (0 °C) was essential for the synthesis of hydrazones 1c and 1d (R1 = CH3, R2 = CH3 or (CH2)6CH3), probably because of the their enhanced NH-acidity.


Scheme 2: Synthesis of α-halogen-substituted hydrazones 1 from α-halocarbonyl compounds and acylhydrazines or carbazates.

Reaction of α-halogen hydrazones 1 with benzylamine

In our initial studies, benzylamine was chosen as model amine in reactions with α-halogen-substituted hydrazones 1. After brief optimization of the reaction conditions (solvent, base and ratio of reagents), it was found that alkylation of benzylamine with 2.0 equiv of Boc-hydrazone 1a and 2.0 equiv of potassium carbonate as a base in MeOH led to bishydrazone 2a in highest yield. The bright yellow color appeared in course of reagents mixing indicating the formation of azoalkene intermediate A [35-39]. Under these conditions, a range of other α-halogen hydrazones 1b–d,f,g were successfully converted to corresponding bishydrazones 2b–d,f,g in good to high yields (Table 1). In case of 1e, bearing a benzoyl group, the formation of a complex mixture was observed and target product 2e was not isolable (Table 1, entry 5).

Table 1: Reaction of α-halogen-substituted hydrazones 1 with benzylamine.

[Graphic 1]
Entry 1 2 R1 R2 Yield, %a
1 a a CH3 Ot-Bu 92
2 b b CH3 OEt 87
3 c c CH3 CH3 84
4 d d CH3 (CH2)6CH3 76
5 e e CH3 Ph b
6 f f Ph Ot-Bu 82
7 g g CO2Et Ot-Bu 66

aIsolated yields. bComplex mixture of products.

Variation of the amine component in the reaction with chloroacetone hydrazone 1a

The suggested reaction conditions were successfully extended to a range of primary and secondary amines providing corresponding polyhydrazones 39 (Figure 2).


Figure 2: Structures of polyhydrazones 3-9. Methods: A: 1 equiv of amine, 2 equiv of 1a, 2 equiv of K2CO3; B; 1 equiv of amine, 1 equiv of 1a, 1 equiv of K2CO3; C; 1 equiv of amine, 3.1 equiv of 1a, 3 equiv of K2CO3; D. 1 equiv of amine, 4.2 equiv of 1a, 4 equiv of K2CO3. Yield based on the amine used.

Thus, propargylamine and (L)-valine methyl ester (generated in situ from the corresponding hydrochloride and an additional equivalent of potassium carbonate) in the reaction with two equivalents of chloroacetone hydrazone 1a provided the corresponding functionalized bishydrazones 3 and 4 in good yields (method A in Figure 2). On the other hand, an aromatic amine (aniline) under the aforementioned conditions led to monohydrazone 5 as a major product. Even when a 3-fold excess of 1a was used, a mixture of mono- and bisadducts was obtained. This may be attributed to the reduced nucleophility of the secondary amino group in the primarily formed adduct 5. The reaction of aniline with 1.0 equiv of chlorohydrazone 1a gave 5 in 84% yield (method B in Figure 2). Similarly, the reaction with a secondary amine (morpholine) according to this procedure provided the monoalkylated adduct 6 in good yield.

Importantly, secondary polyamines could be exhaustively alkylated with chloroacetone hydrazone 1a demonstrating the efficiency of our approach for the synthesis of polyhydrazones. Thus, treatment of macrocyclic polyamines tacn (1,4,7-triazacyclononane), tacd (1,5,9-triazacyclododecane) and cyclam (1,4,8,11-tetraazacyclotetradecane) with 1a gave the corresponding tris- and tetra-hydrazones 7, 8 and 9, respectively, in high yields (methods C,D in Figure 2, a small excess of 1a was used to ensure complete alkylation). Macrocyclic polynitrogen ligands with several hydrazone arms may be of interest for the design of sensors [52] and contrast agents [53].

Unfortunately, alkylation of ethylenediamine with 4 equivalents of 1a led to an indecipherable mixture of products. In this case, the primary alkylation adducts might be unstable and undergo heterocyclization reactions (on the synthesis of heterocyclic compounds from azoalkenes and diamines see [54-56]).

Bishydrazones containing clickable groups (like 3) can be introduced into functional molecules or immobilized on a support. This was demonstrated by the synthesis of a mixed triazole-hydrazone ligand 10 by CuAAC reaction of 3 with phenyl azide (Scheme 3) (for application of mixed triazole-imine ligands see [31,32,34]).


Scheme 3: Synthesis of a mixed triazole-hydrazone ligand 10.

Reaction of α-halogen-substituted hydrazones 1 with ammonia

Addition of α-halohydrazones 1 to ammonia (Table 2) have a special significance because the expected trishydrazones 11 are obvious analogs of tris(iminomethyl)amines widely used in the catalysis of azide–alkyne cycloadditions [29-32,34]. Furthermore, intramolecular cyclotrimerization of C=N bonds in trishydrozones would lead to unusual 1,4,6,10-tertraazaadamantane derivatives (vide infra) [57-60].

Table 2: Synthesis of trishydrazones 11.

[Graphic 2]
Entry 1 11 R1 R2 Yield, %
1 a a CH3 Ot-Bu 83
2 b b CH3 OEt 46
3 d d CH3 (CH2)6CH3 73
4 f f Ph Ot-Bu 65a
5 h h H Ot-Bu 66b

aSecondary amine HN(CH2C(=N-NHBoc)Ph)2 12f was also isolated in 24% yield. bYield on two steps from BocNHNH2.

The treatment of model hydrazone 1a in MeOH with an excess of aqueous ammonia led to the desired trishydrazone 11a without the formation of corresponding primary and secondary amines or quaternary ammonium salts (Table 2, entry 1). Other hydrazones of α-haloketones 1b,d,f and the hydrazone of chloroacetaldehyde 1h were successfully involved in the reaction with ammonia providing the corresponding trishydrazones 11b,d,fh in moderate to good yields (Table 2). In the case of phenyl-substituted hydrazone 1f, a bis-adduct 12f was obtained in addition to trishydrazone 11f (Table 2, entry 4).

Cyclization of trishydrazones 11

Upon treatment with acetic acid, trishydrazone 11b underwent a remarkable transformation to the tetraazaadamantane derivative 13b via intramolecular cyclotrimerization of C=N bonds (Scheme 4). A similar reaction leading to N-hydroxy-substituted 1,4,6,10-tetraazadamantanes was recently observed by us for trisoximes [57-60]. However, 1,4,6,10-tetraazaadamantanes with three N-amino groups are not accessible by the previously reported method from trisoximes [57-59]. Tetraazaadamantane with this substitution pattern is a promising platform for the design of supramolecular recognizing systems and for the construction of new molecular cage architectures.


Scheme 4: Cyclisation of 11b into 1,4,6,10-tetraazaadamantane derivative.

The formation of the 1,4,6,10-tetraazaadamantane cage was unambiguously confirmed by X-ray analysis of the crystal solvate of 13b with water and methanol (Figure 3) as well as by 1H and 13C NMR spectra.


Figure 3: General view of 13b in representation of atoms with thermal ellipsoids at 50% probability level; all hydrogen atoms (except for those of the NH groups) are omitted for clarity. The compound crystallizes as a crystallosolvate with two water molecules and one methanol entity (those are not shown) per two symmetry-independent molecules of the product. CCDC 1501437 contains the supplementary crystallographic data for 13b. These data can be obtained free of charge via (or from the CCDC, 12 Union Road, Cambridge, CB21EZ, UK; or

Considering the reversible character of the imine cyclotrimerization [57,61], such a process may be viewed as a way to modulate the molecular geometry of trishydrazones bearing functional fragments at nitrogen atoms. Further studies of this remarkable cyclization are ongoing.

Structure and isomerism in hydrazones 212

All newly obtained hydrazones were 212 characterized by 1H, 13C NMR spectroscopy and HRMS data. Most of the hydrazones were obtained as mixtures of E/Z-isomers (see Supporting Information File 1). The ratio of isomers depends on the substitution pattern and solvent. For example, the E,E-isomer was predominant for 2a in DMSO-d6, while in CDCl3 E,Z-2a was the major isomer. The assignment of stereoisomers was performed using known correlations between the configuration of the C=N bond and the chemical shift of hydrogen and carbon atoms attached to it [62].


In conclusion, we developed a convenient approach for the synthesis of hitherto unknown poly(hydrazonomethyl)amines I from α-haloketones, hydrazides and simple amines (ammonia). Using this combinatorial approach, a series of new prospective bis-, tris- and tetrahydrazone ligands were prepared. Trishydrazone 11b was shown to undergo an intramolecular cyclotrimerization of the C=N bonds resulting in the formation of the respective N-amino-substituted 1,4,6,10-tetraazaadamantane derivative. Further studies of coordination chemistry aspects of poly(hydrazonomethyl)amines I and their applications as ligands in transition metal catalysis are currently underway.

Supporting Information

Supporting Information File 1: Experimental procedures, characterization data for new compounds, copies of 1H and 13C NMR spectra.
Format: PDF Size: 3.0 MB Download
Supporting Information File 2: Crystal structure file for compound 13b.
Format: CIF Size: 2.1 MB Download


This work was supported by the Russian Science Foundation (project 14-23-00150).


  1. Su, X.; Aprahamian, I. Chem. Soc. Rev. 2014, 43, 1963–1981. doi:10.1039/c3cs60385g
    Return to citation in text: [1] [2] [3]
  2. Tatum, L. A.; Su, X.; Aprahamian, I. Acc. Chem. Res. 2014, 47, 2141–2149. doi:10.1021/ar500111f
    Return to citation in text: [1] [2] [3]
  3. Chandrasekhar, V.; Azhakar, R.; Bickley, J. F.; Steiner, A. Chem. Commun. 2005, 459–461. doi:10.1039/b414353a
    Return to citation in text: [1] [2]
  4. Klein, J. M.; Saggiomo, V.; Reck, L.; McPartlin, M.; Dan Pantoş, G.; Lüning, U.; Sanders, J. K. M. Chem. Commun. 2011, 47, 3371–3373. doi:10.1039/c0cc04863a
    Return to citation in text: [1] [2]
  5. Poolman, J. M.; Boekhoven, J.; Besselink, A.; Olive, A. G. L.; van Esch, J. H.; Eelkema, R. Nat. Protoc. 2014, 9, 977–988. doi:10.1038/nprot.2014.055
    Return to citation in text: [1] [2]
  6. Stadler, A.-M.; Ramírez, J.; Lehn, J.-M.; Vincent, B. Chem. Sci. 2016, 7, 3689–3693. doi:10.1039/C5SC04403K
    Return to citation in text: [1] [2]
  7. Buchs (née Levrand), B.; Fieber, W.; Vigouroux-Elie, F.; Sreenivasachary, N.; Lehn, J.-M.; Herrmann, A. Org. Biomol. Chem. 2011, 9, 2906–2916. doi:10.1039/C0OB01139H
    Return to citation in text: [1] [2]
  8. Ratjen, L.; Lehn, J.-M. RSC Adv. 2014, 4, 50554–50557. doi:10.1039/C4RA11119B
    Return to citation in text: [1] [2]
  9. Cao, X.-Y.; Harrowfield, J.; Nitschke, J.; Ramírez, J.; Stadler, A.-M.; Kyritsakas-Gruber, N.; Madalan, A.; Rissanen, K.; Russo, L.; Vaughan, G.; Lehn, J.-M. Eur. J. Inorg. Chem. 2007, 2944–2965. doi:10.1002/ejic.200700235
    Return to citation in text: [1] [2]
  10. Chaur, M. N.; Collado, D.; Lehn, J.-M. Chem. – Eur. J. 2011, 17, 248–258. doi:10.1002/chem.201002308
    Return to citation in text: [1] [2]
  11. Folmer-Andersen, J. F.; Lehn, J.-M. Angew. Chem., Int. Ed. 2009, 48, 7664–7667. doi:10.1002/anie.200902487
    Return to citation in text: [1] [2]
  12. Folmer-Andersen, J. F.; Lehn, J.-M. J. Am. Chem. Soc. 2011, 133, 10966–10973. doi:10.1021/ja2035909
    Return to citation in text: [1] [2]
  13. Pace, G.; Stefankiewicz, A.; Harrowfield, J.; Lehn, J.-M.; Samorì, P. ChemPhysChem 2009, 10, 699–705. doi:10.1002/cphc.200800733
    Return to citation in text: [1] [2]
  14. Roy, N.; Buhler, E.; Lehn, J.-M. Polym. Int. 2014, 63, 1400–1405. doi:10.1002/pi.4646
    Return to citation in text: [1] [2]
  15. Schaeffer, G.; Harrowfield, J. M.; Lehn, J.-M.; Hirsch, A. K. H. Polyhedron 2012, 41, 40–43. doi:10.1016/j.poly.2012.04.013
    Return to citation in text: [1] [2]
  16. von Delius, M.; Geertsema, E. M.; Leigh, D. A. Nat. Chem. 2010, 2, 96–101. doi:10.1038/nchem.481
    Return to citation in text: [1] [2]
  17. von Delius, M.; Geertsema, E. M.; Leigh, D. A.; Slawin, A. M. Z. Org. Biomol. Chem. 2010, 8, 4617–4624. doi:10.1039/c0ob00214c
    Return to citation in text: [1] [2]
  18. Edison, S. E.; Hotz, R. P.; Baldwin, M. J. Chem. Commun. 2004, 1212–1213. doi:10.1039/b403668a
    Return to citation in text: [1]
  19. Goldcamp, M. J.; Robison, S. E.; Krause Bauer, J. A.; Baldwin, M. J. Inorg. Chem. 2002, 41, 2307–2309. doi:10.1021/ic015590w
    Return to citation in text: [1]
  20. Goldcamp, M. J.; Rosa, D. T.; Landers, N. A.; Mandel, S. M.; Krause Bauer, J. A.; Baldwin, M. J. Synthesis 2000, 2033–2038. doi:10.1055/s-2000-8724
    Return to citation in text: [1]
  21. Goldcamp, M. J.; Edison, S. E.; Squires, L. N.; Rosa, D. T.; Vowels, N. K.; Coker, N. L.; Krause Bauer, J. A.; Baldwin, M. J. Inorg. Chem. 2003, 42, 717–728. doi:10.1021/ic025860q
    Return to citation in text: [1]
  22. Semakin, A. N.; Sukhorukov, A. Yu.; Lesiv, A. V.; Khomutova, Y. A.; Ioffe, S. L.; Lyssenko, K. A. Synthesis 2007, 2862–2866. doi:10.1055/s-2007-983847
    Return to citation in text: [1]
  23. Semakin, A. N.; Sukhorukov, A. Yu.; Ioffe, S. L.; Tartakovsky, V. A. Synthesis 2011, 1403–1412. doi:10.1055/s-0030-1259995
    Return to citation in text: [1]
  24. Shalamova, E. A.; Lee, Y.; Chung, G.; Semakin, A. N.; Oh, J.; Sukhorukov, A. Yu.; Arkhipov, D. E.; Ioffe, S. L.; Semenov, S. E. Tetrahedron Lett. 2014, 55, 1222–1225. doi:10.1016/j.tetlet.2014.01.003
    Return to citation in text: [1]
  25. Dorokhov, V. S.; Jung, H.; Kang, G.; Andreev, Y. A.; Semakin, A. N.; Oh, J.; Sukhorukov, A. Yu.; Ioffe, S. L.; Semenov, S. E. Synth. Commun. 2015, 45, 1362–1366. doi:10.1080/00397911.2015.1021424
    Return to citation in text: [1]
  26. Boyko, Y. D.; Sukhorukov, A. Yu.; Semakin, A. N.; Nelyubina, Y. V.; Ananyev, I. V.; Rangappa, K. S.; Ioffe, S. L. Polyhedron 2014, 71, 24–33. doi:10.1016/j.poly.2014.01.003
    Return to citation in text: [1]
  27. Premužić, D.; Muche, S.; Hołyńska, M. New J. Chem. 2014, 38, 2894–2901. doi:10.1039/C4NJ00194J
    Return to citation in text: [1]
  28. Premužić, D.; Korabik, M.; Hołyńska, M. J. Mol. Struct. 2014, 1059, 265–270. doi:10.1016/j.molstruc.2013.12.001
    Return to citation in text: [1]
  29. Chan, T. R.; Hilgraf, R.; Sharpless, K. B.; Fokin, V. V. Org. Lett. 2004, 6, 2853–2855. doi:10.1021/ol0493094
    Return to citation in text: [1] [2]
  30. Rodionov, V. O.; Presolski, S.; Gardinier, S.; Lim, Y.-H.; Finn, M. G. J. Am. Chem. Soc. 2007, 129, 12696–12704. doi:10.1021/ja072678l
    Return to citation in text: [1] [2]
  31. Presolski, S. I.; Hong, V.; Cho, S.-H.; Finn, M. G. J. Am. Chem. Soc. 2010, 132, 14570–14576. doi:10.1021/ja105743g
    Return to citation in text: [1] [2] [3]
  32. Lewis, W. G.; Magallon, F. G.; Fokin, V. V.; Finn, M. G. J. Am. Chem. Soc. 2004, 126, 9152–9153. doi:10.1021/ja048425z
    Return to citation in text: [1] [2] [3]
  33. Blackman, A. G. Polyhedron 2005, 24, 1–39. doi:10.1016/j.poly.2004.10.012
    Return to citation in text: [1]
  34. Semakin, A. N.; Agababyan, D. P.; Kim, S.; Lee, S.; Sukhorukov, A. Yu.; Fedina, K. G.; Oh, J.; Ioffe, S. L. Tetrahedron Lett. 2015, 56, 6335–6339. doi:10.1016/j.tetlet.2015.09.106
    Return to citation in text: [1] [2] [3]
  35. Attanasi, O. A.; Caglioti, L. Org. Prep. Proced. Int. 1986, 18, 299–327. doi:10.1080/00304948609356836
    Return to citation in text: [1] [2] [3]
  36. Attanasi, O. A.; Filippone, P. Synlett 1997, 1128–1140. doi:10.1055/s-1997-973
    Return to citation in text: [1] [2] [3]
  37. Attanasi, O. A.; De Crescenti, L.; Filippone, P.; Mantellini, F.; Santeusanio, S. ARKIVOC 2002, xi, 274–292.
    Return to citation in text: [1] [2] [3]
  38. Attanasi, O. A.; De Crescentini, L.; Favi, G.; Filippone, P.; Mantellini, F.; Perrulli, F. R.; Santeusanio, S. Eur. J. Org. Chem. 2009, 3109–3127. doi:10.1002/ejoc.200900243
    Return to citation in text: [1] [2] [3] [4]
  39. Lemos, A. Molecules 2009, 14, 4098–4119. doi:10.3390/molecules14104098
    Return to citation in text: [1] [2] [3] [4]
  40. Beyer, H.; Badicke, G. Chem. Ber. 1960, 93, 826–833. doi:10.1002/cber.19600930411
    Return to citation in text: [1]
  41. Schultz, A. G.; Hagmann, W. K. J. Org. Chem. 1978, 43, 3391–3393. doi:10.1021/jo00411a029
    Return to citation in text: [1]
  42. Haelters, J. P.; Corbel, B.; Sturtz, G. Phosphorus, Sulfur Silicon Relat. Elem. 1988, 37, 65–85. doi:10.1080/03086648808074352
    Return to citation in text: [1]
  43. Arcadi, A.; Attanasi, O. A.; De Crescentini, L.; Rossi, E. Tetrahedron Lett. 1997, 38, 2329–2332. doi:10.1016/S0040-4039(97)00306-7
    Return to citation in text: [1]
  44. Palacios, F.; Aparicio, D.; López, Y.; de los Santos, J. M. Tetrahedron 2005, 61, 2815–2830. doi:10.1016/j.tet.2005.01.081
    Return to citation in text: [1]
  45. Yunoki, R.; Yajima, A.; Taniguchi, T.; Ishibashi, H. Tetrahedron Lett. 2013, 54, 4102–4105. doi:10.1016/j.tetlet.2013.05.110
    Return to citation in text: [1]
  46. Attanasi, O. A.; Berretta, S.; De Crescentini, L.; Favi, G.; Giorgi, G.; Mantellini, F. Adv. Synth. Catal. 2009, 351, 715–719. doi:10.1002/adsc.200800807
    Return to citation in text: [1]
  47. Attanasi, O. A.; De Crescentini, L.; Filippone, P.; Giorgi, G.; Nicolini, S.; Perrulli, F. R.; Santeusanio, S. Tetrahedron 2014, 70, 7336–7343. doi:10.1016/j.tet.2014.07.038
    Return to citation in text: [1]
  48. Attanasi, O.; Filippone, P.; Battistoni, P.; Fava, G. Synthesis 1984, 422–424. doi:10.1055/s-1984-30860
    Return to citation in text: [1]
  49. Perrulli, F. R.; Favi, G.; De Crescentini, L.; Attanasi, O. A.; Santeusanio, S.; Mantellini, F. Eur. J. Org. Chem. 2015, 7154–7159. doi:10.1002/ejoc.201501017
    Return to citation in text: [1]
  50. Kylmälä, T.; Hämäläinen, A.; Kuuloja, N.; Tois, J.; Franzén, R. Tetrahedron 2010, 66, 8854–8861. doi:10.1016/j.tet.2010.09.069
    Return to citation in text: [1]
  51. Attanasi, O. A.; De Crescentini, L.; Filippone, P.; Foresti, E.; Mantellini, F. J. Org. Chem. 2000, 65, 2820–2823. doi:10.1021/jo9917792
    Return to citation in text: [1]
  52. Tamanini, E.; Flavin, K.; Motevalli, M.; Piperno, S.; Gheber, L. A.; Todd, M. H.; Watkinson, M. Inorg. Chem. 2010, 49, 3789–3800. doi:10.1021/ic901939x
    Return to citation in text: [1]
  53. Caravan, P.; Ellison, J. J.; McMurry, T. J.; Lauffer, R. B. Chem. Rev. 1999, 99, 2293–2352. doi:10.1021/cr980440x
    Return to citation in text: [1]
  54. Aparicio, D.; Attanasi, O. A.; Filippone, P.; Ignacio, R.; Lillini, S.; Mantellini, F.; Palacios, F.; de los Santos, J. M. J. Org. Chem. 2006, 71, 5897–5905. doi:10.1021/jo060450v
    Return to citation in text: [1]
  55. Attanasi, O. A.; De Crescentini, L.; Favi, G.; Mantellini, F.; Nicolini, S. J. Org. Chem. 2011, 76, 8320–8328. doi:10.1021/jo201497r
    Return to citation in text: [1]
  56. Attanasi, O. A.; De Crescentini, L.; Favi, G.; Filippone, P.; Lillini, S.; Mantellini, F.; Santeusanio, S. Synlett 2005, 1474–1476. doi:10.1055/s-2005-868517
    Return to citation in text: [1]
  57. Semakin, A. N.; Sukhorukov, A. Yu.; Lesiv, A. V.; Ioffe, S. L.; Lyssenko, K. A.; Nelyubina, Y. V.; Tartakovsky, V. A. Org. Lett. 2009, 11, 4072–4075. doi:10.1021/ol9015157
    Return to citation in text: [1] [2] [3] [4]
  58. Semakin, A. N.; Sukhorukov, A. Yu.; Nelyubina, Y. V.; Ioffe, S. L.; Tartakovsky, V. A. Synthesis 2012, 1095–1101. doi:10.1055/s-0031-1289735
    Return to citation in text: [1] [2] [3]
  59. Semakin, A. N.; Sukhorukov, A. Yu.; Nelyubina, Y. V.; Khomutova, Y. A.; Ioffe, S. L.; Tartakovsky, V. A. J. Org. Chem. 2014, 79, 6079–6086. doi:10.1021/jo5007703
    Return to citation in text: [1] [2] [3]
  60. Golovanov, I. S.; Sukhorukov, A. Yu.; Nelyubina, Y. V.; Khomutova, Y. A.; Ioffe, S. L.; Tartakovsky, V. A. J. Org. Chem. 2015, 80, 6728–6736. doi:10.1021/acs.joc.5b00892
    Return to citation in text: [1] [2]
  61. García, J. M.; Jones, G. O.; Virwani, K.; McCloskey, B. D.; Boday, D. J.; ter Huurne, G. M.; Horn, H. W.; Coady, D. J.; Bintaleb, A. M.; Alabdulrahman, A. M. S.; Alsewailem, F.; Almegren, H. A. A.; Hedrick, J. L. Science 2014, 344, 732–735. doi:10.1126/science.1251484
    Return to citation in text: [1]
  62. Palla, G.; Predieri, G.; Domiano, P.; Vignali, C.; Turner, W. Tetrahedron 1986, 42, 3649–3654. doi:10.1016/S0040-4020(01)87332-4
    Return to citation in text: [1]

© 2016 Semakin et al.; licensee Beilstein-Institut.
This is an Open Access article under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
The license is subject to the Beilstein Journal of Organic Chemistry terms and conditions: (

Back to Article List

Other Beilstein-Institut Open Science Activities

Keep Informed

RSS Feed

Subscribe to our Latest Articles RSS Feed.


Follow the Beilstein-Institut


Twitter: @BeilsteinInst