cistrans-Amide isomerism of the 3,4-dehydroproline residue, the ‘unpuckered’ proline

Vladimir Kubyshkin and Nediljko Budisa
Beilstein J. Org. Chem. 2016, 12, 589–593. https://doi.org/10.3762/bjoc.12.57

Supporting Information

The crystal structures are deposited in Cambridge Structural Database under the following IDs: 5- CCDC1443104, 6- CCDC1443105, 8- CCDC1443103, 9- CCDC1443102. The crystal structure of 7 have already been discussed in [35] and the deposit number was CCDC1042476. The structure files can be retrieved free of charge at http://www.ccdc.cam.ac.uk.

Supporting Information File 1: Experimental procedures, values for the amide rotational barriers in different solvents, copies of the NMR spectra and ellipsoid diagrams of the X-ray crystal structures.
Format: PDF Size: 1.6 MB Download

Cite the Following Article

cistrans-Amide isomerism of the 3,4-dehydroproline residue, the ‘unpuckered’ proline
Vladimir Kubyshkin and Nediljko Budisa
Beilstein J. Org. Chem. 2016, 12, 589–593. https://doi.org/10.3762/bjoc.12.57

How to Cite

Kubyshkin, V.; Budisa, N. Beilstein J. Org. Chem. 2016, 12, 589–593. doi:10.3762/bjoc.12.57

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 252.3 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Schnitzer, T.; Trapp, N.; Fischer, L.-M.; Wennemers, H. Crystal structure analysis of N-acetylated proline and ring size analogs. Journal of peptide science : an official publication of the European Peptide Society 2023, 29, e3473. doi:10.1002/psc.3473
  • Chernykh, A. V.; Aloshyn, D.; Kuchkovska, Y. O.; Daniliuc, C. G.; Tolmachova, N. A.; Kondratov, I. S.; Zozulya, S.; Grygorenko, O. O.; Haufe, G. Impact of β-perfluoroalkyl substitution of proline on the proteolytic stability of its peptide derivatives. Organic & biomolecular chemistry 2022, 20, 9337–9350. doi:10.1039/d2ob01430k
  • Yang, Y.; Hansen, L. Optimized Fmoc-Removal Strategy to Suppress the Traceless and Conventional Diketopiperazine Formation in Solid-Phase Peptide Synthesis. ACS omega 2022, 7, 12015–12020. doi:10.1021/acsomega.2c00214
  • Mykhailiuk, P. K. Fluorine-Containing Prolines: Synthetic Strategies, Applications, and Opportunities. The Journal of organic chemistry 2022, 87, 6961–7005. doi:10.1021/acs.joc.1c02956
  • Kubyshkin, V. Polarity effects in 4-fluoro- and 4-(trifluoromethyl)prolines. Beilstein journal of organic chemistry 2020, 16, 1837–1852. doi:10.3762/bjoc.16.151
  • Elbatrawi, Y. M.; Pedretty, K. P.; Giddings, N.; Woodcock, H. L.; Del Valle, J. R. δ-Azaproline and Its Oxidized Variants. The Journal of organic chemistry 2020, 85, 4207–4219. doi:10.1021/acs.joc.9b03384
  • Mosesso, R.; Dougherty, D. A.; Lummis, S. C. R. Proline Residues in the Transmembrane/Extracellular Domain Interface Loops Have Different Behaviors in 5-HT3 and nACh Receptors. ACS chemical neuroscience 2019, 10, 3327–3333. doi:10.1021/acschemneuro.9b00315
  • Nikitin, K.; O'Gara, R. Mechanisms and Beyond: Elucidation of Fluxional Dynamics by Exchange NMR Spectroscopy. Chemistry (Weinheim an der Bergstrasse, Germany) 2019, 25, 4551–4589. doi:10.1002/chem.201804123
  • Xie, J.; Wu, Y.-Y.; Zhang, T.-Y.; Zhang, M.-Y.; Peng, F.; Lin, B.; Zhang, Y.-X. New antimicrobial compounds produced by endophytic Penicillium janthinellum isolated from Panax notoginseng as potential inhibitors of FtsZ. Fitoterapia 2018, 131, 35–43. doi:10.1016/j.fitote.2018.10.006
  • Kubyshkin, V.; Pridma, S. O.; Budisa, N. Comparative effects of trifluoromethyl- and methyl-group substitutions in proline. New Journal of Chemistry 2018, 42, 13461–13470. doi:10.1039/c8nj02631a
  • Priem, C.; Geyer, A. Synthetic Marine Sponge Collagen by Late-Stage Dihydroxylation. Organic letters 2017, 20, 162–165. doi:10.1021/acs.orglett.7b03525
  • Mykhailiuk, P. K.; Kubyshkin, V.; Bach, T.; Budisa, N. Peptidyl-Prolyl Model Study: How Does the Electronic Effect Influence the Amide Bond Conformation?. The Journal of organic chemistry 2017, 82, 8831–8841. doi:10.1021/acs.joc.7b00803
  • Kubyshkin, V.; Durkin, P.; Budisa, N. Energetic contribution to both acidity and conformational stability in peptide models. New Journal of Chemistry 2016, 40, 5209–5220. doi:10.1039/c5nj03611a
Other Beilstein-Institut Open Science Activities