Cite the Following Article
Fluorescent carbon dots from mono- and polysaccharides: synthesis, properties and applications
Stephen Hill and M. Carmen Galan
Beilstein J. Org. Chem. 2017, 13, 675–693.
https://doi.org/10.3762/bjoc.13.67
How to Cite
Hill, S.; Galan, M. C. Beilstein J. Org. Chem. 2017, 13, 675–693. doi:10.3762/bjoc.13.67
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 196.6 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Montilla-Agredo, D. A.; Ramírez-Sanabria, A. E.; Ostos, C. E.; Miranda-Morales, B. C.; Gutiérrez-Portilla, J. V. Synthesis and characterization of carbon quantum dots obtained from the pyrolysis of the cocoa bean husk and its impregnation in electrocatalysts based on Ti and Pt. International Journal of Materials Research 2025. doi:10.1515/ijmr-2024-0252
- Ramezani Farani, M.; Zandi, A.; Shojaeian, F.; Zhang, M.; Khorsandi, D.; Mollarasouli, F.; Alipourfard, I.; Farahani, A.; Choi, Y. J.; Kang, H.; Huh, Y. S. Biomimetic Carbon-Based Nanomaterials: From Design Strategies to Next-Generation Biosensing and Theranostic Applications. Small (Weinheim an der Bergstrasse, Germany) 2025, e02711. doi:10.1002/smll.202502711
- Dessai, A. D.; Nair, A.; Selvasudha, N.; Garg, S.; Nayak, U. Y. Glyco-nanomaterials as a therapeutic target in drug delivery and biomedicine: A review. International journal of biological macromolecules 2025, 329, 147830. doi:10.1016/j.ijbiomac.2025.147830
- Nguyen, D. H. H.; El-Ramady, H.; Törős, G.; Muthu, A.; Elsakhawy, T.; Abdalla, N.; Alibrahem, W.; Kharrat Helu, N.; Prokisch, J. Food-Derived Carbon Dots: Formation, Detection, and Impact on Gut Microbiota. Foods (Basel, Switzerland) 2025, 14, 2980. doi:10.3390/foods14172980
- Lan, Y.; Zhou, X.; Zheng, R.; Li, J.; Wang, M.; Wang, D.; Li, S.; Xiao, Y.; Hu, J.; Yang, M.; Li, L.; Wang, M.; Wu, J.; Gao, D. Solvent assisted regulation of the properties of Sanguisorba officinalis L. derived carbon dots: Application in antioxidant, fluorescence imaging and fluorescence detection. Materials Research Bulletin 2025, 194, 113730. doi:10.1016/j.materresbull.2025.113730
- Yan, Y.; Li, H.; He, H.; Chen, L.; Chen, N.; Wang, W.; Liu, R. Biomass-Derived Fluorescent Probe from Silk Tree Flowers for the Selective and Sensitive Determination of Iron (III) in Water and Food. Analytical Letters 2025, 1–18. doi:10.1080/00032719.2025.2531447
- Ghirardello, M.; Ramos-Soriano, J.; Galan, M. C. Carbon Dots as an Emergent Class of Sustainable Antifungal Agents. ACS nano 2025, 19, 24377–24403. doi:10.1021/acsnano.5c03934
- Alqudaihi, K.; Alrwaily, B.; Alzawad, B.; Sheraz, M.; Zubair, M.; Arshad, Z.; Hussain, I.; Aziz, M. A.; Baig, N. Advances in Biomass-Derived Carbon Materials: Production, Functionalization, and Applications for Contaminant Removal. Chemistry, an Asian journal 2025, 20, e00445. doi:10.1002/asia.202500445
- Ahmed, H. B.; Mikhail, M. M.; El-Shahat, M.; Emam, H. E. Clustering of carbon quantum dots from polysaccharides (Cellulose, Alginate, Chitosan) versus heterocyclic compounds: Synthesis, characterization and medical applications. Carbohydrate Polymer Technologies and Applications 2025, 9, 100738. doi:10.1016/j.carpta.2025.100738
- Kempahanumakkagari, S. K.; Raghu, G.; Ramakrishnappa, T. Comparative analysis of fluorescent carbon nanoparticles and fluorescent inorganic nanoparticles: synthesis, properties and applications. Fluorescent Carbon Nanoparticles; Elsevier, 2025; pp 723–765. doi:10.1016/b978-0-443-13591-0.00008-5
- Sethumadhavan, V.; Guleria, M.; Kumar, P.; Bhowmick, M.; Bhowmick, P.; Ashique, S.; Husain, I.; Pal, R. Cutting-edge Approach of Carbon Nanostructures: Targeted Drug Delivery to Central Nervous System. Central nervous system agents in medicinal chemistry 2025, 25, 274–294. doi:10.2174/0118715249305383240705045921
- Белых, А. Г.; Друзь, Ю. И.; Михайлов, В. И.; Ситников, П. А.; Торлопов, М. А.; Шевченко, О. Г. Флуоресцентные наноматериалы из нанокристаллической целлюлозы. Žurnal prikladnoj himii 2024, 97, 401–409. doi:10.31857/s0044461824050062
- Pandey, A.; Raikwar, V. A comprehensive review on luminescent carbon dots and their polymer composites: Synthesis to applications. Nano-Structures & Nano-Objects 2024, 40, 101339. doi:10.1016/j.nanoso.2024.101339
- Bhatia, P.; Chaira, T.; Gupta, L. K. Therapeutic Applications of Carbon Quantum Dots (CQDs): A Review. Journal of Inorganic and Organometallic Polymers and Materials 2024, 35, 3243–3259. doi:10.1007/s10904-024-03510-9
- Yao, Y.; Zhou, W.; Cai, K.; Wen, J.; Zhang, X. Advances in the study of the biological activity of polysaccharide-based carbon dots: A review. International journal of biological macromolecules 2024, 281, 135774. doi:10.1016/j.ijbiomac.2024.135774
- Ahmad, M. A.; Ulfa, D. K.; Sakti, S. C. W.; Khasanah, M.; Wibrianto, A.; Sugito, S. F. A.; Chang, J.-y.; Fahmi, M. Z. A photoluminescence and colorimetric dual-active mode of copper-modified carbon dots for quantitative sensing of histamine. Physica Scripta 2024, 99, 55931–055931. doi:10.1088/1402-4896/ad37ac
- Üclü, S.; Marschelke, C.; Drees, F.; Giesler, M.; Wilms, D.; Köhler, T.; Schmidt, S.; Synytska, A.; Hartmann, L. Sweet Janus Particles: Multifunctional Inhibitors of Carbohydrate-Based Bacterial Adhesion. Biomacromolecules 2024, 25, 2399–2407. doi:10.1021/acs.biomac.3c01333
- Balan, A.; Kennedy, M. M. R.; Manikantan, V.; Alexander, A.; Varalakshmi, G. S.; Ramasamy, S.; Pillai, A. S.; Enoch, I. V. M. V. Dysprosium-doped carbon quantum dot nanocarrier: in vitro anticancer activity. Bulletin of Materials Science 2024, 47. doi:10.1007/s12034-023-03109-9
- de Medeiros, T. V.; Macina, A.; de Mesquita, J. P.; Naccache, R. Nitrogen-doped carbon dots in transesterification reactions for biodiesel synthesis. RSC Applied Interfaces 2024, 1, 86–97. doi:10.1039/d3lf00060e
- Patel, V.; Shah, J. Anti-cancer and neuroprotective effects of conjugated graphene quantum dot in brain tumor-bearing rat model. Nano Express 2023, 4, 45010–045010. doi:10.1088/2632-959x/ad100d
Patents
- ZADERKO ALEXANDER. Process for obtaining of fluoralkylated carbon quantum dots. US 12071575 B2, Aug 27, 2024.
- BENITO-ALIFONSO DAVID; SWIFT THOMAS A; GALAN M CARMEN; WHITNEY HEATHER M. COMPOSITIONS AND METHODS FOR DELIVERY OF NUCLEIC ACID TO PLANT CELLS. EP 4012034 A1, June 15, 2022.
- DORH NECIAH; DORH JOSEPHINE NDOA; BENITO-ALIFONSO DAVID; GALAN MARIA CARMEN; SPENCER JAMES; VENDEVILLE JEAN-BAPTISTE; KYRIAKIDES MATHEW JOHN; NEWMAN HENRY RALPH GORDON; HOLBROW-WILSHAW MAISIE EMMA. CELLULAR MATERIAL DETECTION PROBES. WO 2021224640 A1, Nov 11, 2021.
- ZADERKO ALEXANDER. THE PROCESS FOR OBTAINING OF FLUORALKYLATED CARBON QUANTUM DOTS. WO 2020121119 A1, June 18, 2020.
- CARMEN M GALAN; DAVID BENITO-ALIFONSO; THOMAS A SWIFT; HEATHER M WHITNEY. Compositions and methods for delivery of nucleic acid to plant cells. GB 2570804 A, Aug 7, 2019.
- GALAN M CARMEN; BENITO-ALIFONSO DAVID; SWIFT THOMAS A; WHITNEY HEATHER M. COMPOSITIONS AND METHODS FOR DELIVERY OF NUCLEIC ACID TO PLANT CELLS. WO 2019134897 A1, July 11, 2019.