Cobalt–metalloid alloys for electrochemical oxidation of 5-hydroxymethylfurfural as an alternative anode reaction in lieu of oxygen evolution during water splitting

Jonas Weidner, Stefan Barwe, Kirill Sliozberg, Stefan Piontek, Justus Masa, Ulf-Peter Apfel and Wolfgang Schuhmann
Beilstein J. Org. Chem. 2018, 14, 1436–1445. https://doi.org/10.3762/bjoc.14.121

Supporting Information

Supporting Information File 1: Additional figures and chromatograms.
Format: PDF Size: 1.1 MB Download

Cite the Following Article

Cobalt–metalloid alloys for electrochemical oxidation of 5-hydroxymethylfurfural as an alternative anode reaction in lieu of oxygen evolution during water splitting
Jonas Weidner, Stefan Barwe, Kirill Sliozberg, Stefan Piontek, Justus Masa, Ulf-Peter Apfel and Wolfgang Schuhmann
Beilstein J. Org. Chem. 2018, 14, 1436–1445. https://doi.org/10.3762/bjoc.14.121

How to Cite

Weidner, J.; Barwe, S.; Sliozberg, K.; Piontek, S.; Masa, J.; Apfel, U.-P.; Schuhmann, W. Beilstein J. Org. Chem. 2018, 14, 1436–1445. doi:10.3762/bjoc.14.121

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 659.0 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Song, Z.; Liu, L.; Zhu, X.; Ren, Z.; Bai, J. Cobalt-based catalysts for catalytic oxidation of biomass-derived 5-Hydromethylfurfural to value-added chemicals. Renewable and Sustainable Energy Reviews 2024, 189, 114003. doi:10.1016/j.rser.2023.114003
  • Li, H.; Huang, X.; Lv, Y.; Zhang, J.; Li, W. Highly efficient electrooxidation of 5-hydroxymethylfurfural (HMF) by Cu regulated Co carbonate hydroxides boosting hydrogen evolution reaction. International Journal of Hydrogen Energy 2023, 48, 38279–38295. doi:10.1016/j.ijhydene.2023.06.097
  • Song, G.; Mu, L.; Qiao, P.; Yang, L.; Zhang, M.; Dai, F.; Dai, L.; Wu, H.; Gao, Z.; Shi, G.; Song, S. Oxygen vacancies modulated Co3O4 toward highly efficient electrooxidation of 5-hydroxymethylfurfural. Results in Engineering 2023, 20, 101606. doi:10.1016/j.rineng.2023.101606
  • Kawashima, K.; Márquez, R. A.; Smith, L. A.; Vaidyula, R. R.; Carrasco-Jaim, O. A.; Wang, Z.; Son, Y. J.; Cao, C. L.; Mullins, C. B. A Review of Transition Metal Boride, Carbide, Pnictide, and Chalcogenide Water Oxidation Electrocatalysts. Chemical reviews 2023, 123, 12795–13208. doi:10.1021/acs.chemrev.3c00005
  • Sobota, L.; Bondue, C. J.; Hosseini, P.; Kaiser, C.; Spallek, M.; Tschulik, K. Impact of the Electrochemically Inert Furan Ring on the Oxidation of the Alcohol and Aldehyde Functional Group of 5‐Hydroxymethylfurfural (HMF). ChemElectroChem 2023, 11. doi:10.1002/celc.202300151
  • Liu, F.; Lin, N.; Cong, L.; Li, X.; Han, F.; Xin, D.; Lin, H. Industrially Promising β‐Ni(OH)2 Nanosheets Self‐Supported Electrode for Highly Efficient Electrooxidation of 5‐Hydroxymethylfurfural. ChemCatChem 2023, 15. doi:10.1002/cctc.202300765
  • Qiang, Y.; Ouyang, D.; You, L.; Liu, D.; Zhao, X. Liquid flow fuel cell with an electrodeposition-modified nickel foam anode for efficient oxidation of 5-hydroxymethylfurfural to produce 2, 5-furandicarboxylic acid with co-generation of electricity. Chemical Engineering Journal 2023, 469, 143832. doi:10.1016/j.cej.2023.143832
  • Yang, Z.; Zhang, B.; Yan, C.; Xue, Z.; Mu, T. The pivot to achieve high current density for biomass electrooxidation: Accelerating the reduction of Ni3+ to Ni2+. Applied Catalysis B: Environmental 2023, 330, 122590. doi:10.1016/j.apcatb.2023.122590
  • Xie, S.; Fu, H.; Chen, L.; Li, Y.; Shen, K. Carbon-based nanoarrays embedded with Ce-doped ultrasmall Co2P nanoparticles enable efficient electrooxidation of 5-hydroxymethylfurfural coupled with hydrogen production. Science China Chemistry 2023, 66, 2141–2152. doi:10.1007/s11426-023-1666-4
  • Zhong, R.; Wu, P.; Wang, Q.; Zhang, X.; Du, L.; Liu, Y.; Yang, H.; Gu, M.; Zhang, Z. C.; Huang, L.; Ye, S. Room-temperature fabrication of defective CoOxHy nanosheets with abundant oxygen vacancies and high porosity as efficient 5-hydroxymethylfurfural oxidation electrocatalysts. Green Chemistry 2023, 25, 4674–4684. doi:10.1039/d3gc00588g
  • Cheng, S.; Zhong, H.; Jin, F. A mini review of electrocatalytic upgrading of carbohydrate biomass—System, path, and optimization. Energy Science & Engineering 2023, 11, 2944–2965. doi:10.1002/ese3.1487
  • Liu, F.; Lin, N.; Xin, D.; Li, X.; Cong, L.; Han, F.; Lin, H. Insights into the deactivation mechanism of a self-supported nickel electrode for 5-hydroxymethyl furfural electrooxidation: focus on the stability of the electrode as a whole. Catalysis Science & Technology 2023, 13, 3182–3191. doi:10.1039/d3cy00183k
  • Ma, L.; Gao, X.; Liu, X.; Gu, X.; Li, B.; Mao, B.; Sun, Z.; Gao, W.; Jia, X.; Chen, J. Recent advances in organic electrosynthesis using heterogeneous catalysts modified electrodes. Chinese Chemical Letters 2023, 34, 107735. doi:10.1016/j.cclet.2022.08.015
  • Zhang, C.; Zhang, C.; Li, J.; Ma, Y.; Jin, W.; Guo, Z.; Lü, X.; Ma, H. Green N-N oxidative coupling synthesis of energetic compounds and energy-saving hydrogen evolution reaction. Applied Surface Science 2023, 611, 155659. doi:10.1016/j.apsusc.2022.155659
  • Zhang, Y.; Wang, Y.; Liu, G.; Niu, Y.; Shen, J. Electrochemical Oxidation of 5-Hydroxymethylfurfural by In-Situ Prepared Nico Double Hydroxide Electrodes. Elsevier BV 2023. doi:10.2139/ssrn.4583457
  • Qu, D.; He, S.; Chen, L.; Ye, Y.; Ge, Q.; Cong, H.; Jiang, N.; Ha, Y. Paired electrocatalysis in 5-hydroxymethylfurfural valorization. Frontiers in chemistry 2022, 10, 1055865. doi:10.3389/fchem.2022.1055865
  • Gao, L.; Wen, X.; Liu, S.; Qu, D.; Ma, Y.; Feng, J.; Zhong, Z.; Guan, H.; Niu, L. Nickel-vanadium-cobalt ternary layered double hydroxide for efficient electrocatalytic upgrading of 5-hydroxymethylfurfural to 2,5-furancarboxylic acid at low potential. Journal of Materials Chemistry A 2022, 10, 21135–21141. doi:10.1039/d2ta03016k
  • Bender, M. T.; Yuan, X.; Goetz, M. K.; Choi, K.-S. Electrochemical Hydrogenation, Hydrogenolysis, and Dehydrogenation for Reductive and Oxidative Biomass Upgrading Using 5-Hydroxymethylfurfural as a Model System. ACS Catalysis 2022, 12, 12349–12368. doi:10.1021/acscatal.2c03606
  • Lin, R.; Salehi, M.; Guo, J.; Seifitokaldani, A. High oxidation state enabled by plated Ni-P achieves superior electrocatalytic performance for 5-hydroxymethylfurfural oxidation reaction. iScience 2022, 25, 104744. doi:10.1016/j.isci.2022.104744
  • Zhao, Z.; Guo, T.; Luo, X.; Qin, X.; Zheng, L.; Yu, L.; Lv, Z.; Ma, D.; Zheng, H. Bimetallic sites and coordination effects: electronic structure engineering of NiCo-based sulfide for 5-hydroxymethylfurfural electrooxidation. Catalysis Science & Technology 2022, 12, 3817–3825. doi:10.1039/d2cy00281g

Patents

  • VO NHAT TAM; PASQUIER DAVID; LARMIER KIM; CACCIUTTOLO QUENTIN. Procédé d’électro-oxydation d’un composé furanique. FR 3129955 A1, June 9, 2023.
  • VO NHAT TAM; PASQUIER DAVID; LARMIER KIM; CACCIUTTOLO QUENTIN. METHOD FOR THE ELECTRO-OXIDATION OF A FURAN COMPOUND. WO 2023099689 A1, June 8, 2023.
Other Beilstein-Institut Open Science Activities