Applications of organocatalysed visible-light photoredox reactions for medicinal chemistry

Michael K. Bogdos, Emmanuel Pinard and John A. Murphy
Beilstein J. Org. Chem. 2018, 14, 2035–2064. https://doi.org/10.3762/bjoc.14.179

Cite the Following Article

Applications of organocatalysed visible-light photoredox reactions for medicinal chemistry
Michael K. Bogdos, Emmanuel Pinard and John A. Murphy
Beilstein J. Org. Chem. 2018, 14, 2035–2064. https://doi.org/10.3762/bjoc.14.179

How to Cite

Bogdos, M. K.; Pinard, E.; Murphy, J. A. Beilstein J. Org. Chem. 2018, 14, 2035–2064. doi:10.3762/bjoc.14.179

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 193.6 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Rossi, S.; Puglisi, A. Stereoselective Photocatalytic Transformations in Continuous Flow. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier, 2024. doi:10.1016/b978-0-32-390644-9.00150-5
  • Sen, P. P.; Pathania, V.; Raha Roy, S. Unveiling the potency of a phenalenyl-based photocatalyst for intramolecular dehydrogenative lactonization. Organic Chemistry Frontiers 2023, 11, 106–112. doi:10.1039/d3qo01662e
  • Peng, Y.; Su, Z.; Jin, M.; Zhu, L.; Guan, Z.-J.; Fang, Y. Recent advances in porous molecular cages for photocatalytic organic conversions. Dalton transactions (Cambridge, England : 2003) 2023, 52, 15216–15232. doi:10.1039/d3dt01679j
  • Dey, D.; Kundu, A.; Roy, M.; Singh, V.; Maji, S.; Adhikari, D. Single electron transfer catalysis by diphenylthiourea under visible light photoredox conditions. Organic Chemistry Frontiers 2023, 10, 5248–5253. doi:10.1039/d3qo01189e
  • Saikia, B. S.; Deb, M. L.; Baruah, P. K. Photocatalyst‐Free Visible‐Light‐Promoted C‐3‐Alkylation of Indoles through C−H Functionalizations of N,N‐Dialkylanilines. ChemistrySelect 2023, 8. doi:10.1002/slct.202302497
  • Clapson, M. L.; Durfy, C. S.; Facchinato, D.; Drover, M. W. Base metal chemistry and catalysis. Cell Reports Physical Science 2023, 4, 101548. doi:10.1016/j.xcrp.2023.101548
  • Pathania, V.; Roy, S. R. Photoinduced Copper(II) Catalyzed Decarboxylative Homocoupling of Arylpropiolic Acids: A Facile Access to the Symmetrical 1,3‐Diynes. Asian Journal of Organic Chemistry 2023, 12. doi:10.1002/ajoc.202300300
  • Gan, Z.; Zhou, J.; Zhu, L.; Chen, X.; Ma, Q.; Yan, J.; Jiang, W.; Liao, S.; Li, Y. Synthesis, properties, and application of phenanthrenone: an undeveloped building block and a photocatalyst. Organic Chemistry Frontiers 2023, 10, 3830–3836. doi:10.1039/d3qo00775h
  • Sen, P. P.; Raha Roy, S. Harnessing the Energy of Visible Light to Promote LMCT of Cu(II) Species for Intramolecular Dehydrogenative Lactonization of Biaryl-2-carboxylic Acids. Organometallics 2023, 42, 1658–1666. doi:10.1021/acs.organomet.3c00210
  • Jaiswal, K.; Mahanta, M.; De, M. Nanomaterials in photocatalysed organic transformations: development, prospects and challenges. Chemical communications (Cambridge, England) 2023, 59, 5987–6003. doi:10.1039/d3cc00993a
  • Mandigma, M. J. P.; Kaur, J.; Barham, J. P. Organophotocatalytic Mechanisms: Simplicity or Naïvety? Diverting Reactive Pathways by Modifications of Catalyst Structure, Redox States and Substrate Preassemblies. ChemCatChem 2023, 15. doi:10.1002/cctc.202201542
  • Guo, H.; Wang, H.; Zhao, H.; Zhang, D. Visible light-promoted synthesis of 4,6a-dihydropyrrolo[3,4-c]pyrrole-1,3(2H,3aH)-dionesvia[3+2] cycloaddition reaction of 2H-azirines with maleimides. New Journal of Chemistry 2023, 47, 5634–5638. doi:10.1039/d2nj06257g
  • Wang, X.; Liu, F.; Xu, T. Catalytic diastereoselective construction of multiple contiguous quaternary carbon stereocenters via [2 + 2] cycloaddition and mechanistic insight. Chinese Chemical Letters 2023, 34, 107624. doi:10.1016/j.cclet.2022.06.047
  • Mishra, P.; Kumar, P.; Srivastava, O. S.; Rastogi, N. Organophotoredox-mediated Formal [3+2]-Cycloaddition of 2H-Azirines with Aryldiazonium Salts: Direct Access to Trisubstituted 1,2,4-Triazoles. Chemistry, an Asian journal 2023, 18, e202300007. doi:10.1002/asia.202300007
  • Bortolato, T.; Simionato, G.; Vayer, M.; Rosso, C.; Paoloni, L.; Benetti, E. M.; Sartorel, A.; Lebœuf, D.; Dell'Amico, L. The Rational Design of Reducing Organophotoredox Catalysts Unlocks Proton-Coupled Electron-Transfer and Atom Transfer Radical Polymerization Mechanisms. Journal of the American Chemical Society 2023, 145, 1835–1846. doi:10.1021/jacs.2c11364
  • Mishra, P.; Shruti, I.; Kant, R.; Thakur, T. S.; Kumar, A.; Rastogi, N. Visible Light Organo‐Photocatalytic Synthesis of 3‐Imidazolines. European Journal of Organic Chemistry 2022, 2022. doi:10.1002/ejoc.202201079
  • Pramanik, M.; Mal, P. doi:10.1002/9783527834242.chf0206
  • Saikia, B. S.; Borpatra, P. J.; Rahman, I.; Deb, M. L.; Baruah, P. K. Visible-light-promoted sulfenylation of 6-aminouracils under catalyst-free conditions. New Journal of Chemistry 2022, 46, 16523–16529. doi:10.1039/d2nj01941h
  • Rastogi, N.; Devi, L.; Mishra, P.; Pokhriyal, A. Organo-photocatalytic Synthesis of Functionalized Pyrroles from 2H-Azirines and α-Substituted Nitroalkenes. SynOpen 2022, 6, 198–207. doi:10.1055/s-0042-1751360
  • Varlet, T.; Bouchet, D.; Van Elslande, E.; Masson, G. Decatungstate-Photocatalyzed Dearomative Hydroacylation of Indoles: Direct Synthesis of 2-Acylindolines. Chemistry (Weinheim an der Bergstrasse, Germany) 2022, 28, e202201707. doi:10.1002/chem.202201707
Other Beilstein-Institut Open Science Activities