Cite the Following Article
Olefin metathesis catalysts embedded in β-barrel proteins: creating artificial metalloproteins for olefin metathesis
Daniel F. Sauer, Johannes Schiffels, Takashi Hayashi, Ulrich Schwaneberg and Jun Okuda
Beilstein J. Org. Chem. 2018, 14, 2861–2871.
https://doi.org/10.3762/bjoc.14.265
How to Cite
Sauer, D. F.; Schiffels, J.; Hayashi, T.; Schwaneberg, U.; Okuda, J. Beilstein J. Org. Chem. 2018, 14, 2861–2871. doi:10.3762/bjoc.14.265
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 907.3 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- He, C.; Duan, J.; Zhou, Y.; Cui, J.; Ma, X. Direct covalent immobilization of the Hoveyda-Grubbs catalyst without molecular modification for achieving economical and efficient olefin metathesis. Dalton transactions (Cambridge, England : 2003) 2025, 54, 12760–12765. doi:10.1039/d5dt01440a
- Öztürk, B. Ö. doi:10.1002/9783527846849.ch8
- Zhang, X. Cyclization Strategies in Carbonyl-Olefin Metathesis: An Up-to-Date Review. Molecules (Basel, Switzerland) 2024, 29, 4861. doi:10.3390/molecules29204861
- Tunalı, Z.; Sagdic, K.; Inci, F.; Öztürk, B. Ö. Encapsulation of the Hoveyda–Grubbs 2nd generation catalyst in magnetically separable alginate/mesoporous carbon beads for olefin metathesis reactions in water. Reaction Chemistry & Engineering 2022, 7, 1617–1625. doi:10.1039/d2re00058j
- Wittwer, M.; Markel, U.; Schiffels, J.; Okuda, J.; Sauer, D. F.; Schwaneberg, U. Engineering and emerging applications of artificial metalloenzymes with whole cells. Nature Catalysis 2021, 4, 814–827. doi:10.1038/s41929-021-00673-3
- Benke, Z.; Remete, A. M.; Kiss, L. A study on selective transformation of norbornadiene into fluorinated cyclopentane-fused isoxazolines. Beilstein journal of organic chemistry 2021, 17, 2051–2066. doi:10.3762/bjoc.17.132
- Fischer, S.; Ward, T. R.; Liang, A. D. Engineering a Metathesis-Catalyzing Artificial Metalloenzyme Based on HaloTag. ACS catalysis 2021, 11, 6343–6347. doi:10.1021/acscatal.1c01470
- Markel, U.; Sauer, D. F.; Wittwer, M.; Schiffels, J.; Cui, H.; Davari, M. D.; Kröckert, K.; Herres-Pawlis, S.; Okuda, J.; Schwaneberg, U. Chemogenetic Evolution of a Peroxidase-like Artificial Metalloenzyme. ACS Catalysis 2021, 11, 5079–5087. doi:10.1021/acscatal.1c00134
- Thiel, A.; Sauer, D. F.; Markel, U.; Mertens, M. A. S.; Polen, T.; Schwaneberg, U.; Okuda, J. An artificial ruthenium-containing β-barrel protein for alkene–alkyne coupling reaction. Organic & biomolecular chemistry 2021, 19, 2912–2916. doi:10.1039/d1ob00279a
- Matsuo, T. Functionalization of Ruthenium Olefin-Metathesis Catalysts for Interdisciplinary Studies in Chemistry and Biology. Catalysts 2021, 11, 359. doi:10.3390/catal11030359
- Kato, S.; Onoda, A.; Grimm, A. R.; Schwaneberg, U.; Hayashi, T. Construction of a whole-cell biohybrid catalyst using a Cp*Rh(III)-dithiophosphate complex as a precursor of a metal cofactor. Journal of inorganic biochemistry 2021, 216, 111352. doi:10.1016/j.jinorgbio.2020.111352
- Kato, S.; Onoda, A.; Grimm, A. R.; Tachikawa, K.; Schwaneberg, U.; Hayashi, T. Incorporation of a Cp*Rh(III)-dithiophosphate Cofactor with Latent Activity into a Protein Scaffold Generates a Biohybrid Catalyst Promoting C(sp2)–H Bond Functionalization. Inorganic chemistry 2020, 59, 14457–14463. doi:10.1021/acs.inorgchem.0c02245
- Garakani, T. M.; Sauer, D. F.; Mertens, M. A. S.; Lazar, J.; Gehrmann, J.; Arlt, M.; Schiffels, J.; Schnakenberg, U.; Okuda, J.; Schwaneberg, U. FhuA–Grubbs–Hoveyda Biohybrid Catalyst Embedded in a Polymer Film Enables Catalysis in Neat Substrates. ACS Catalysis 2020, 10, 10946–10953. doi:10.1021/acscatal.0c03055
- Tiso, T.; Sauer, D. F.; Beckerle, K.; Blesken, C. C.; Okuda, J.; Blank, L. M. A Combined Bio-Chemical Synthesis Route for 1-Octene Sheds Light on Rhamnolipid Structure. Catalysts 2020, 10, 874. doi:10.3390/catal10080874
- Herndon, J. W. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2018. Coordination Chemistry Reviews 2019, 401, 213051. doi:10.1016/j.ccr.2019.213051
- Grela, K.; Kajetanowicz, A. Progress in metathesis chemistry. Beilstein journal of organic chemistry 2019, 15, 2765–2766. doi:10.3762/bjoc.15.267
- Mertens, M. A. S.; Sauer, D. F.; Markel, U.; Schiffels, J.; Okuda, J.; Schwaneberg, U. Chemoenzymatic cascade for stilbene production from cinnamic acid catalyzed by ferulic acid decarboxylase and an artificial metathease. Catalysis Science & Technology 2019, 9, 5572–5576. doi:10.1039/c9cy01412h
- Adachi, T.; Harada, A.; Yamaguchi, H. Atroposelective antibodies as a designed protein scaffold for artificial metalloenzymes. Scientific reports 2019, 9, 13551. doi:10.1038/s41598-019-49844-0
- Davis, H. J.; Ward, T. R. Artificial Metalloenzymes: Challenges and Opportunities. ACS central science 2019, 5, 1120–1136. doi:10.1021/acscentsci.9b00397