Aminosugar-based immunomodulator lipid A: synthetic approaches

Alla Zamyatina
Beilstein J. Org. Chem. 2018, 14, 25–53.

Cite the Following Article

Aminosugar-based immunomodulator lipid A: synthetic approaches
Alla Zamyatina
Beilstein J. Org. Chem. 2018, 14, 25–53.

How to Cite

Zamyatina, A. Beilstein J. Org. Chem. 2018, 14, 25–53. doi:10.3762/bjoc.14.3

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 290.5 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Zhang, W.; Hu, W.; Zhu, Q.; Niu, M.; An, N.; Feng, Y.; Kawamura, K.; Fu, P. Hydroxy fatty acids in the surface Earth system. The Science of the total environment 2023, 906, 167358. doi:10.1016/j.scitotenv.2023.167358
  • Ding, D.; Wen, Y.; Liao, C.-M.; Yin, X.-G.; Zhang, R.-Y.; Wang, J.; Zhou, S.-H.; Zhang, Z.-M.; Zou, Y.-K.; Gao, X.-F.; Wei, H.-W.; Yang, G.-F.; Guo, J. Self-Adjuvanting Protein Vaccine Conjugated with a Novel Synthetic TLR4 Agonist on Virus-Like Liposome Induces Potent Immunity against SARS-CoV-2. Journal of medicinal chemistry 2023, 66, 1467–1483. doi:10.1021/acs.jmedchem.2c01642
  • Manabe, Y.; Fukase, K. Innovative Vaccine Strategy: Self-Adjuvanting Conjugate Vaccines. Methods in molecular biology (Clifton, N.J.) 2023, 2613, 55–72. doi:10.1007/978-1-0716-2910-9_5
  • Dubreuil, A.; Mas, P.; Schmitzer, A. R. Synthesis and antimicrobial activity of novel bis-benzimidazolium salts. New Journal of Chemistry 2022, 47, 51–55. doi:10.1039/d2nj02026b
  • Strobl, S.; Hofbauer, K.; Heine, H.; Zamyatina, A. Lipid A Mimetics Based on Unnatural Disaccharide Scaffold as Potent TLR4 Agonists for Prospective Immunotherapeutics and Adjuvants. Chemistry (Weinheim an der Bergstrasse, Germany) 2022, 28, e202200547. doi:10.1002/chem.202200547
  • Marcano, R.; Rojo, M. Á.; Cordoba-Diaz, D.; Garrosa, M. Pathological and Therapeutic Approach to Endotoxin-Secreting Bacteria Involved in Periodontal Disease. Toxins 2021, 13, 533. doi:10.3390/toxins13080533
  • Kim, S.; Jo, S.; Kim, M. S.; Kam, H.; Shin, D. H. Inhibition of d-glycero-β-d-manno-heptose 1-phosphate adenylyltransferase from Burkholderia pseudomallei by epigallocatechin gallate and myricetin. The Biochemical journal 2021, 478, 235–245. doi:10.1042/bcj20200677
  • Barchi, J. J. Comprehensive Glycoscience - Introduction to Comprehensive Glycoscience: The Good, the Better and What's to Come. Comprehensive Glycoscience; Elsevier, 2021; pp 1–20. doi:10.1016/b978-0-12-819475-1.00108-5
  • Manabe, Y.; Chang, T.-C.; Fukase, K. Recent advances in self-adjuvanting glycoconjugate vaccines. Drug discovery today. Technologies 2020, 37, 61–71. doi:10.1016/j.ddtec.2020.11.006
  • Reintjens, N. R. M.; Tondini, E.; de Jong, A. R.; Meeuwenoord, N. J.; Chiodo, F.; Peterse, E.; Overkleeft, H. S.; Filippov, D. V.; van der Marel, G. A.; Ossendorp, F.; Codée, J. D. C. Journal of Medicinal Chemistry - Self-Adjuvanting Cancer Vaccines from Conjugation-Ready Lipid A Analogues and Synthetic Long Peptides. Journal of medicinal chemistry 2020, 63, 11691–11706. doi:10.1021/acs.jmedchem.0c00851
  • Tanaka, S. Asymmetric Synthesis of Chiral Heterocyclic Compounds via Intramolecular Dehydrative Allylation Catalyzed by a Cp-ruthenium-Brønsted Acid Combined Catalyst. Journal of Synthetic Organic Chemistry, Japan 2020, 78, 943–951. doi:10.5059/yukigoseikyokaishi.78.943
  • Aiga, T.; Manabe, Y.; Ito, K.; Chang, T.-C.; Kabayama, K.; Ohshima, S.; Kametani, Y.; Miura, A.; Furukawa, H.; Inaba, H.; Matsuura, K.; Fukase, K. Immunological Evaluation of Co-Assembling a Lipidated Peptide Antigen and Lipophilic Adjuvants: Self-Adjuvanting Anti-Breast-Cancer Vaccine Candidates. Angewandte Chemie (International ed. in English) 2020, 59, 17705–17711. doi:10.1002/anie.202007999
  • Aiga, T.; Manabe, Y.; Ito, K.; Chang, T.; Kabayama, K.; Ohshima, S.; Kametani, Y.; Miura, A.; Furukawa, H.; Inaba, H.; Matsuura, K.; Fukase, K. Immunological Evaluation of Co‐Assembling a Lipidated Peptide Antigen and Lipophilic Adjuvants: Self‐Adjuvanting Anti‐Breast‐Cancer Vaccine Candidates. Angewandte Chemie 2020, 132, 17858–17864. doi:10.1002/ange.202007999
  • Romerio, A.; Peri, F. Increasing the Chemical Variety of Small-Molecule-Based TLR4 Modulators: An Overview. Frontiers in immunology 2020, 11, 1210. doi:10.3389/fimmu.2020.01210
  • Sengyee, S.; Yoon, S. H.; West, T. E.; Ernst, R. K.; Chantratita, N. Lipopolysaccharides from Different Burkholderia Species with Different Lipid A Structures Induce Toll-Like Receptor 4 Activation and React with Melioidosis Patient Sera. Infection and immunity 2019, 87. doi:10.1128/iai.00692-19
  • Williams, K. L. The Mammalian Response: A Mosaic of Structures. Endotoxin Detection and Control in Pharma, Limulus, and Mammalian Systems; Springer International Publishing, 2019; pp 709–785. doi:10.1007/978-3-030-17148-3_20
  • Tanaka, S.; Suzuki, Y.; Kimura, T.; Kitamura, M. A Chiral Picolinic Acid Ligand, Cl-Naph-PyCOOH, for CpRu-Catalyzed Dehydrative Allylation: Design, Synthesis, and Properties. Bulletin of the Chemical Society of Japan 2019, 92, 1707–1720. doi:10.1246/bcsj.20190134
  • Cloutier, M.; Muru, K.; Ravicoularamin, G.; Gauthier, C. Polysaccharides from Burkholderia species as targets for vaccine development, immunomodulation and chemical synthesis. Natural product reports 2018, 35, 1251–1293. doi:10.1039/c8np00046h
  • Adanitsch, F.; Shi, J.; Shao, F.; Beyaert, R.; Heine, H.; Zamyatina, A. Synthetic glycan-based TLR4 agonists targeting caspase-4/11 for the development of adjuvants and immunotherapeutics. Chemical science 2018, 9, 3957–3963. doi:10.1039/c7sc05323a
Other Beilstein-Institut Open Science Activities