Understanding the unexpected effect of frequency on the kinetics of a covalent reaction under ball-milling conditions

Ana M. Belenguer, Adam A. L. Michalchuk, Giulio I. Lampronti and Jeremy K. M. Sanders
Beilstein J. Org. Chem. 2019, 15, 1226–1235. https://doi.org/10.3762/bjoc.15.120

Supporting Information

Supporting Information File 1: Experimental methodology for ball mill grinding experiments, analysis by HPLC and PXRD; quantitation by Rietveld refinement and particle size analysis by Scherrer equation.
Format: PDF Size: 2.3 MB Download
Supporting Information File 2: Kinetic model parameterization and additional model features.
Format: PDF Size: 1.1 MB Download

Cite the Following Article

Understanding the unexpected effect of frequency on the kinetics of a covalent reaction under ball-milling conditions
Ana M. Belenguer, Adam A. L. Michalchuk, Giulio I. Lampronti and Jeremy K. M. Sanders
Beilstein J. Org. Chem. 2019, 15, 1226–1235. https://doi.org/10.3762/bjoc.15.120

How to Cite

Belenguer, A. M.; Michalchuk, A. A. L.; Lampronti, G. I.; Sanders, J. K. M. Beilstein J. Org. Chem. 2019, 15, 1226–1235. doi:10.3762/bjoc.15.120

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 865.4 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Lapshin, O. V.; Boyangin, E. N. Effect of low-energy mechanical activation (LEMA) on the morphology of 3Ni/Al powder and the synthesis of Ni3Al intermetallic compound. Intermetallics 2024, 167, 108225. doi:10.1016/j.intermet.2024.108225
  • Bugaj, K.; Pokora-Sobczak, P.; Mielniczak, G.; Sancineto, L.; Santi, C.; Drabowicz, J. Formation, functionalization and interconversion of sulfur containing functional groups in mechanochemical conditions. Phosphorus, Sulfur, and Silicon and the Related Elements 2023, 1–9. doi:10.1080/10426507.2023.2281474
  • Linberg, K.; Szymoniak, P.; Schönhals, A.; Emmerling, F.; Michalchuk, A. A. L. The Origin of Delayed Polymorphism in Molecular Crystals Under Mechanochemical Conditions. Chemistry (Weinheim an der Bergstrasse, Germany) 2023, 29, e202302150. doi:10.1002/chem.202302150
  • Scheurrell, K.; B Martins, I. C.; Murray, C.; Emmerling, F. Exploring the role of solvent polarity in mechanochemical Knoevenagel condensation: in situ investigation and isolation of reaction intermediates. Physical chemistry chemical physics : PCCP 2023, 25, 23637–23644. doi:10.1039/d3cp02883f
  • Ljubek, G.; Kralj, M.; Kraljić Roković, M. Fluorine-free mechanochemical synthesis of MXene. Materials Science and Technology 2023, 39, 1645–1649. doi:10.1080/02670836.2023.2178173
  • Hernández, J. G.; Ardila-Fierro, K. J.; Gómez, S.; Stolar, T.; Rubčić, M.; Topić, E.; Hadad, C. Z.; Restrepo, A. The Role of Crystalline Intermediates in Mechanochemical Cyclorhodation Reactions Elucidated by in-Situ X-ray Powder Diffraction and Computation. Chemistry (Weinheim an der Bergstrasse, Germany) 2023, 29, e202301290. doi:10.1002/chem.202301290
  • Lapshin, O. V.; Boyangin, E. N. Macrokinetics of thermal explosion in a 3Ni-Al system mechanically activated in a low-energy mill. Journal of Alloys and Compounds 2023, 948, 169790. doi:10.1016/j.jallcom.2023.169790
  • Margetić, D. Recent applications of mechanochemistry in synthetic organic chemistry. Pure and Applied Chemistry 2023, 95, 315–328. doi:10.1515/pac-2022-1202
  • Iyer, J.; Barbosa, M.; Saraf, I.; Pinto, J. F.; Paudel, A. Mechanoactivation as a Tool to Assess the Autoxidation Propensity of Amorphous Drugs. Molecular pharmaceutics 2023, 20, 1112–1128. doi:10.1021/acs.molpharmaceut.2c00841
  • Vugrin, L.; Carta, M.; Lukin, S.; Meštrović, E.; Delogu, F.; Halasz, I. Mechanochemical reaction kinetics scales linearly with impact energy. Faraday discussions 2023, 241, 217–229. doi:10.1039/d2fd00083k
  • Boldyreva, E. Spiers Memorial Lecture: Mechanochemistry, tribochemistry, mechanical alloying - retrospect, achievements and challenges. Faraday discussions 2023, 241, 9–62. doi:10.1039/d2fd00149g
  • Bilovol, V.; Sikora, M.; Szkudlarek, A.; Gajewska, M. Magnetic interactions in SrFe12O19/CoFe2O4 composite: Influence of ball milling frequency and annealing temperature. Journal of Magnetism and Magnetic Materials 2022, 564, 170217. doi:10.1016/j.jmmm.2022.170217
  • Cuccu, F.; De Luca, L.; Delogu, F.; Colacino, E.; Solin, N.; Mocci, R.; Porcheddu, A. Mechanochemistry: New Tools to Navigate the Uncharted Territory of "Impossible" Reactions. ChemSusChem 2022, 15, e202200362. doi:10.1002/cssc.202200362
  • Belenguer, A. M.; Lampronti, G. I.; Michalchuk, A. A. L.; Emmerling, F.; Sanders, J. K. M. Quantitative reversible one pot interconversion of three crystalline polymorphs by ball mill grinding. CrystEngComm 2022, 24, 4256–4261. doi:10.1039/d2ce00393g
  • Lapshin, O.; Ivanova, O. Macrokinetic mechanosynthesis model comprising multidirectional factors characterizing the effect of mechanical treatment on the combustion of activated mixtures. Powder Technology 2022, 404, 117419. doi:10.1016/j.powtec.2022.117419
  • Michalchuk, A. A. L.; Emmerling, F. Zeitaufgelöste In‐Situ‐Untersuchungen von mechanochemischen Reaktionen. Angewandte Chemie 2022, 134. doi:10.1002/ange.202117270
  • Michalchuk, A. A. L.; Emmerling, F. Time-Resolved In Situ Monitoring of Mechanochemical Reactions. Angewandte Chemie (International ed. in English) 2022, 61, e202117270. doi:10.1002/anie.202117270
  • Liu, X.; Li, Y.; Zeng, L.; Li, X.; Chen, N.; Bai, S.; He, H.; Wang, Q.; Zhang, C. A Review on Mechanochemistry: Approaching Advanced Energy Materials with Greener Force. Advanced materials (Deerfield Beach, Fla.) 2022, 34, e2108327. doi:10.1002/adma.202108327
  • Hwang, S.; Grätz, S.; Borchardt, L. A guide to direct mechanocatalysis. Chemical communications (Cambridge, England) 2022, 58, 1661–1671. doi:10.1039/d1cc05697b
  • Martins, I. C. B.; Forte, A.; Diogo, H. P.; Raposo, L. R.; Baptista, P. V.; Fernandes, A. R.; Branco, L. C.; Duarte, M. T. A Solvent‐free Strategy to Prepare Amorphous Salts of Folic Acid with Enhanced Solubility and Cell Permeability. Chemistry–Methods 2022, 2. doi:10.1002/cmtd.202100104
Other Beilstein-Institut Open Science Activities