Aqueous olefin metathesis: recent developments and applications

Valerio Sabatino and Thomas R. Ward
Beilstein J. Org. Chem. 2019, 15, 445–468. https://doi.org/10.3762/bjoc.15.39

Cite the Following Article

Aqueous olefin metathesis: recent developments and applications
Valerio Sabatino and Thomas R. Ward
Beilstein J. Org. Chem. 2019, 15, 445–468. https://doi.org/10.3762/bjoc.15.39

How to Cite

Sabatino, V.; Ward, T. R. Beilstein J. Org. Chem. 2019, 15, 445–468. doi:10.3762/bjoc.15.39

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 4.6 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Meeus, E. J.; Laan, P. C. M.; Ham, R.; de Bruin, B.; Reek, J. N. H. Gas Evolution as a Tool to Study Reaction Kinetics Under Biomimetic Conditions. Chemistry (Weinheim an der Bergstrasse, Germany) 2024, e202400516. doi:10.1002/chem.202400516
  • Vornholt, T.; Jončev, Z.; Sabatino, V.; Panke, S.; Ward, T. R.; Sparr, C.; Jeschek, M. An Artificial Metalloenzyme for Atroposelective Metathesis**. ChemCatChem 2023, 15. doi:10.1002/cctc.202301113
  • Rivollier, J.; Gosling, S.; Pezo, V.; Heck, M.-P.; Marlière, P. An emergent biosynthetic pathway to essential amino acids by metabolic metathesis. Cold Spring Harbor Laboratory 2023. doi:10.1101/2023.09.06.556532
  • Barteczko, N.; Grymel, M.; Erfurt, K.; Jakóbik-Kolon, A.; Brzęczek-Szafran, A.; Chrobok, A. Aqueous olefin metathesis with ᴅ-glucose-based bromides giving more efficient catalysis. Journal of Molecular Liquids 2023, 386, 122484. doi:10.1016/j.molliq.2023.122484
  • Suzuki, N.; Watanabe, K.; Takahashi, C.; Takeoka, Y.; Rikukawa, M. Ruthenium-catalyzed Olefin Metathesis in Water using Thermo-responsive Diblock Copolymer Micelles. Current Organic Chemistry 2023, 27, 1347–1356. doi:10.2174/1385272827666230911115809
  • Sauer, D. F.; Markel, U.; Schiffels, J.; Okuda, J.; Schwaneberg, U. FhuA: From Iron-Transporting Transmembrane Protein to Versatile Scaffolds through Protein Engineering. Accounts of chemical research 2023, 56, 1433–1444. doi:10.1021/acs.accounts.3c00060
  • Coats, J. P.; Cochereau, R.; Dinu, I. A.; Messmer, D.; Sciortino, F.; Palivan, C. G. Trends in the Synthesis of Polymer Nano- and Microscale Materials for Bio-Related Applications. Macromolecular bioscience 2023, 23, e2200474. doi:10.1002/mabi.202200474
  • You, Y.; Liu, H.; Zhu, Y.; Zheng, H. Rational design of stapled antimicrobial peptides. Amino acids 2023, 55, 421–442. doi:10.1007/s00726-023-03245-w
  • Blanco, C. O.; Fogg, D. E. Water-Accelerated Decomposition of Olefin Metathesis Catalysts. ACS catalysis 2023, 13, 1097–1102. doi:10.1021/acscatal.2c05573
  • Patrzałek, M.; Zieliński, A.; Pasparakis, G.; Vamvakaki, M.; Ruszczyńska, A.; Bulska, E.; Kajetanowicz, A.; Grela, K. Testing diverse strategies for ruthenium catalyst removal after aqueous homogeneous olefin metathesis. Journal of Organometallic Chemistry 2022, 965-966, 122320. doi:10.1016/j.jorganchem.2022.122320
  • Tyszka-Gumkowska, A.; Purohit, V. B.; Nienałtowski, T.; Dąbrowski, M.; Kajetanowicz, A.; Grela, K. Testing enabling techniques for olefin metathesis reactions of lipophilic substrates in water as a diluent. iScience 2022, 25, 104131. doi:10.1016/j.isci.2022.104131
  • Ahmed, W.; Jayant, V.; Alvi, S.; Ahmed, N.; Ahmed, A.; Ali, R. Metathesis Reactions in Natural Product Fragments and Total Syntheses. Asian Journal of Organic Chemistry 2022, 11. doi:10.1002/ajoc.202100753
  • Nasibullin, I.; Smirnov, I.; Ahmadi, P.; Vong, K.; Kurbangalieva, A.; Tanaka, K. Synthetic prodrug design enables biocatalytic activation in mice to elicit tumor growth suppression. Nature communications 2022, 13, 39. doi:10.1038/s41467-021-27804-5
  • Michaudel, Q.; Kempel, S. J.; Hsu, T.-W.; deGruyter, J. N. E vs Z Selectivity in Olefin Metathesis Through Catalyst Design. Comprehensive Organometallic Chemistry IV; Elsevier, 2022; pp 265–338. doi:10.1016/b978-0-12-820206-7.00114-1
  • Belen'kii, L. I.; Gazieva, G. A.; Evdokimenkova, Y. B.; Soboleva, N. O. The literature of heterocyclic chemistry, Part XIX, 2019. Advances in Heterocyclic Chemistry; Elsevier, 2022; pp 225–295. doi:10.1016/bs.aihch.2021.09.002
  • Rubini, R.; Mayer, C. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering - Opportunities for interfacing organometallic catalysts with cellular metabolism. Comprehensive Organometallic Chemistry IV; Elsevier, 2022; pp 121–145. doi:10.1016/b978-0-12-820206-7.00072-x
  • Flores, J. C.; Silbestri, G. F.; de Jesús, E. Water-soluble transition-metal complexes with hydrophilic N-heterocyclic carbene ligands for aqueous-phase applications. Advances in Organometallic Chemistry; Elsevier, 2022; pp 169–242. doi:10.1016/bs.adomc.2022.02.002
  • Pellizzoni, M. M.; Lubskyy, A. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering - Bioorganometallics: Artificial Metalloenzymes With Organometallic Moieties. Comprehensive Organometallic Chemistry IV; Elsevier, 2022; pp 96–120. doi:10.1016/b978-0-12-820206-7.00065-2
  • Toh, R. W.; Patrzałek, M.; Nienałtowski, T.; Piątkowski, J.; Kajetanowicz, A.; Wu, J.; Grela, K. Olefin Metathesis in Continuous Flow Reactor Employing Polar Ruthenium Catalyst and Soluble Metal Scavenger for Instant Purification of Products of Pharmaceutical Interest. ACS sustainable chemistry & engineering 2021, 9, 16450–16458. doi:10.1021/acssuschemeng.1c06522
  • Matsuo, T. Functionalization of Ruthenium Olefin-Metathesis Catalysts for Interdisciplinary Studies in Chemistry and Biology. Catalysts 2021, 11, 359. doi:10.3390/catal11030359
Other Beilstein-Institut Open Science Activities