Cite the Following Article
Asymmetric synthesis of a high added value chiral amine using immobilized ω-transaminases
Antonella Petri, Valeria Colonna and Oreste Piccolo
Beilstein J. Org. Chem. 2019, 15, 60–66.
https://doi.org/10.3762/bjoc.15.6
How to Cite
Petri, A.; Colonna, V.; Piccolo, O. Beilstein J. Org. Chem. 2019, 15, 60–66. doi:10.3762/bjoc.15.6
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 189.7 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Rosati, C.; Piccolo, O.; Petri, A. Study on the Immobilization of a Transaminase Biocatalyst for the Synthesis of Sitagliptin. Catalysts 2025, 15, 326. doi:10.3390/catal15040326
- Xiang, C.; Ce, Y.-K.; Xue, Y.-P.; Zheng, Y.-G. The pedal-like loop of (R)-selective transaminases plays a critical role to the functionality of the enzyme. Biotechnology letters 2025, 47, 35. doi:10.1007/s10529-025-03577-5
- Gao, X.; Zhang, W.; Wei, X.; Zhao, L.; Che, C.; Zhang, Z.; Wei, H.; Qin, B.; Liu, W.; Jia, X.; You, S. Structure-guided engineering an (R)-transaminase from Mycobacterium neoaurum for efficient synthesis of chiral N-heterocyclic amines. International journal of biological macromolecules 2024, 287, 138591. doi:10.1016/j.ijbiomac.2024.138591
- Tang, Z.; Oku, Y.; Matsuda, T. Application of Immobilized Enzymes in Flow Biocatalysis for Efficient Synthesis. Organic Process Research & Development 2024, 28, 1308–1326. doi:10.1021/acs.oprd.3c00405
- Ralbovsky, N. M.; Smith, J. P. Recent Applications of Process Analytical Technology for Analysis of Industrial Asymmetric Syntheses. Comprehensive Chirality; Elsevier, 2024; pp 301–329. doi:10.1016/b978-0-32-390644-9.00087-1
- Tamborini, L.; Molinari, F.; Pinto, A. Development of asymmetric biotransformations: flow biocatalysis, photobiocatalysis, and microwave biocatalysis. Biocatalysis in Asymmetric Synthesis; Elsevier, 2024; pp 403–429. doi:10.1016/b978-0-443-19057-5.00001-7
- Meersseman Arango, H.; van den Biggelaar, L.; Soumillion, P.; Luis, P.; Leyssens, T.; Paradisi, F.; Debecker, D. P. Continuous flow-mode synthesis of (chiral) amines with transaminase: a strategic biocatalytic approach to essential building blocks. Reaction Chemistry & Engineering 2023, 8, 1505–1544. doi:10.1039/d3re00210a
- Zhu, F.; Zhang, J.; Ma, Y.; Yang, L.; Gao, Q.; Gao, S.; Cui, C. Semi-rational design of an imine reductase for asymmetric synthesis of alkylated S-4-azepanamines. Organic & biomolecular chemistry 2023, 21, 4181–4184. doi:10.1039/d3ob00442b
- Li, F.; Du, Y.; Liang, Y.; Wei, Y.; Zheng, Y.; Yu, H. Redesigning an (R)-Selective Transaminase for the Efficient Synthesis of PharmaceuticalN-Heterocyclic Amines. ACS Catalysis 2022, 13, 422–432. doi:10.1021/acscatal.2c05177
- Wu, S.; Xiang, C.; Zhou, Y.; Khan, M. S. H.; Liu, W.; Feiler, C. G.; Wei, R.; Weber, G.; Höhne, M.; Bornscheuer, U. T. A growth selection system for the directed evolution of amine-forming or converting enzymes. Nature communications 2022, 13, 7458. doi:10.1038/s41467-022-35228-y
- Khatik, A. G.; Muley, A. B.; More, P. R.; Jain, A. K. Transaminase-mediated chiral selective synthesis of (1R)-(3-methylphenyl)ethan-1-amine from 1-(3-methylphenyl)ethan-1-one: process minutiae, optimization, characterization and 'What If studies'. Bioprocess and biosystems engineering 2022, 46, 207–225. doi:10.1007/s00449-022-02824-7
- Schiffers, I.; Frings, M.; Kübber, B. M.; Truong, K.-N.; Rissanen, K.; Bolm, C. Preparation of Enantiopure 3-Aminopiperidine and 3-Aminoazepane Derivatives from Ornithine and Lysine. Consecutive Syntheses of Pharmacologically Active Analogs, Such as Besifloxacin. Organic Process Research & Development 2022, 26, 2811–2822. doi:10.1021/acs.oprd.2c00152
- Ralbovsky, N. M.; Smith, J. P. Process analytical technology and its recent applications for asymmetric synthesis. Talanta 2022, 252, 123787. doi:10.1016/j.talanta.2022.123787
- Khanam, W.; Dubey, N. Recent advances in immobilized ω-transaminase for chiral amine synthesis. Materials Today Chemistry 2022, 24, 100922. doi:10.1016/j.mtchem.2022.100922
- Wang, X.; Xie, Y.; Wang, Z.; Zhang, K.; Wang, H.; Wei, D. Efficient Synthesis of (S)-1-Boc-3-aminopiperidine in a Continuous Flow System Using ω-Transaminase-Immobilized Amino-Ethylenediamine-Modified Epoxide Supports. Organic Process Research & Development 2022, 26, 1351–1359. doi:10.1021/acs.oprd.1c00217
- Paixão, M. W.; Lima, R. N.; Kisukuri, C. M.; Matos, P. M. Comprehensive Heterocyclic Chemistry IV - Pyridines and Their Benzo Derivatives: Reactivity of Reduced Compounds. Comprehensive Heterocyclic Chemistry IV; Elsevier, 2022; pp 92–149. doi:10.1016/b978-0-12-818655-8.00012-3
- Alcover, N.; Álvaro, G.; Guillén, M. Chiral Synthesis of 3-Amino-1-phenylbutane by a Multi-Enzymatic Cascade System. Catalysts 2021, 11, 973. doi:10.3390/catal11080973
- Wang, C.; Tang, K.; Dai, Y.; Jia, H.; Li, Y.; Gao, Z.; Wu, B. Identification, Characterization, and Site-Specific Mutagenesis of a Thermostable ω-Transaminase from Chloroflexi bacterium . ACS omega 2021, 6, 17058–17070. doi:10.1021/acsomega.1c02164
- Halling, P. J. Kinetics of enzyme-catalysed desymmetrisation of prochiral substrates: product enantiomeric excess is not always constant. Beilstein journal of organic chemistry 2021, 17, 873–884. doi:10.3762/bjoc.17.73
- Kosjek, B. doi:10.1002/9781119487043.ch4