Activated carbon as catalyst support: precursors, preparation, modification and characterization

Melanie Iwanow, Tobias Gärtner, Volker Sieber and Burkhard König
Beilstein J. Org. Chem. 2020, 16, 1188–1202. https://doi.org/10.3762/bjoc.16.104

Cite the Following Article

Activated carbon as catalyst support: precursors, preparation, modification and characterization
Melanie Iwanow, Tobias Gärtner, Volker Sieber and Burkhard König
Beilstein J. Org. Chem. 2020, 16, 1188–1202. https://doi.org/10.3762/bjoc.16.104

How to Cite

Iwanow, M.; Gärtner, T.; Sieber, V.; König, B. Beilstein J. Org. Chem. 2020, 16, 1188–1202. doi:10.3762/bjoc.16.104

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 941.2 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Humadi, J. I.; Mohammed, W. T. Fast, ultradeep, and continuous desulfurization of heavy gasoil in novel oscillatory basket central baffled reactor using MnO2-incorparted Fe2O3- supported activated carbon catalyst. Fuel 2025, 400, 135716. doi:10.1016/j.fuel.2025.135716
  • Abounahia, N.; Sinopoli, A.; Tong, Y.; Al-Emadi, A.; Abotaleb, A. Date palm leaves-derived activated carbon as a sustainable support for catalytic methane dry reforming. Gas Science and Engineering 2025, 142, 205716. doi:10.1016/j.jgsce.2025.205716
  • Sharma, S.; Umdor, R. S.; Longchar, I. T.; Singha, B.; Ezung, S. L.; Bhomick, P. C.; Sinha, D. Highly efficient photocatalytic degradation of organic pollutants using novel carbon integrated ZrO2-ZnO nanocomposites: kinetics, molecular docking, DFT simulation and real wastewater application. Journal of Molecular Liquids 2025, 436, 128260. doi:10.1016/j.molliq.2025.128260
  • Gao, S.-Y.; Tang, C.-C.; Zhou, A.-J.; Chen, Z.; Liu, W.; Ren, Y.-X.; Li, Z.-H.; He, Z.-W. Biochar-activated peracetic acid for the degradation of emerging contaminants. Journal of Environmental Chemical Engineering 2025, 13, 117508. doi:10.1016/j.jece.2025.117508
  • Bogeat-Barroso, A.; Alexandre-Franco, M. F.; Fernández-González, C.; Serrano, V. G. Support Surface Chemistry Evolution During the Preparation of Metal Oxide–Activated Carbon Catalysts by Wet Impregnation: A FT-IR Spectroscopy Analysis. Compounds 2025, 5, 36. doi:10.3390/compounds5030036
  • Arayedh, W.; de Steene, L. V.; Saleh, K.; Daouk, E. Role of activation progress on textural properties of biochar and their impact on tar cracking. Chemical Engineering Science 2025, 315, 121877. doi:10.1016/j.ces.2025.121877
  • Zhang, M.; He, C.; Shi, E.; Bei, S.; Zhao, Z.; Zhao, Y. Comparative life-cycle assessment for producing activated carbon from corn stover. Industrial Crops and Products 2025, 231, 121176. doi:10.1016/j.indcrop.2025.121176
  • Kim, S.-B.; Kim, M.; Lee, J.; Choi, H.; Lee, S.-Y.; Park, S.-J. Impact of pore structure in pitch-based activated carbon fibers on Cr(VI) adsorption behaviors. Applied Surface Science Advances 2025, 29, 100835. doi:10.1016/j.apsadv.2025.100835
  • Niu, Q.; Yue, M.; Li, B.; Liu, L.; Xie, W.; Li, M.; Zhang, T.; Wang, Q. Catalysts and modification strategies for CO2 capture and in-situ electroreduction. Journal of Energy Chemistry 2025. doi:10.1016/j.jechem.2025.08.101
  • Martínez-Alvarenga, H.; Cardoso-Almoguera, A.; Gutiérrez, M. D. C.; Benítez, A.; Martín, M. d. L. A.; Caballero, A. Effect of the Activation Agent on Carbons Derived from Exhausted Olive Pomace as Sulfur Hosts in Sustainable Lithium-Sulfur Batteries. ACS applied materials & interfaces 2025, 17, 49594–49611. doi:10.1021/acsami.5c12218
  • Covinich, L. G.; Clauser, N. M.; Area, M. C. Carbon-Based Heterogeneous Catalysis for Biomass Conversion to Levulinic Acid: A Special Focus on the Catalyst. Processes 2025, 13, 2582. doi:10.3390/pr13082582
  • Kanakaraju, D.; Natashya, P. P.; Lim, Y.-C.; Tan, I. A. W. Functionalized TiO2-waste-derived photocatalytic materials for emerging pollutant degradation: synthesis and optimization. Environmental monitoring and assessment 2025, 197, 983. doi:10.1007/s10661-025-14431-6
  • Phillimon, A.; Phu, N. A. M. M.; Wi, E.; Singha, N. R.; Lee, W.; Ko, Y.; Chang, M. Fe-aminoclay functionalized activated carbon for adsorptive removal of phosphate and methyl orange from aqueous solutions. Separation and Purification Technology 2025, 379, 134946. doi:10.1016/j.seppur.2025.134946
  • Tang, Z.; Chen, B.; Huang, W.; Liu, X.; Wang, X.; Gong, X. Predicting Adsorption Performance Based on the Properties of Activated Carbon: A Case Study of Shenqi Fuzheng System. Chemosensors 2025, 13, 279. doi:10.3390/chemosensors13080279
  • Nasiron, S.; Nurhafizah, M.; Abdullah, N.; Abdullah, W.; Ong, H. R.; Suriani, A. A new and low-cost adsorbent material from mesocarp fibre char. Journal of the Indian Chemical Society 2025, 102, 101917. doi:10.1016/j.jics.2025.101917
  • Deng, H.; Li, T.; Li, H.; Dang, A.; Han, Y. Carbon-based adsorbents for CO2 capture: A systematic review. Journal of Industrial and Engineering Chemistry 2025, 147, 39–55. doi:10.1016/j.jiec.2024.12.026
  • Ordabaeva, A. T.; Muldakhmetov, Z. M.; Meiramov, M. G.; Kim, S. V. Activation of Coke Fines Using CO2 and Steam: Optimization and Characterization of Carbon Sorbents. Molecules (Basel, Switzerland) 2025, 30, 2528. doi:10.3390/molecules30122528
  • Molchanov, O.; Krpec, K.; Horák, J.; Ryšavý, J.; Bury, M. Carbon monoxide formation during electrostatic precipitation in small-scale biomass combustion systems. Results in Engineering 2025, 26, 104934. doi:10.1016/j.rineng.2025.104934
  • Güngör, A.; Şentürk, D.; Eşkin, D.; Aksoy, İ.; Kılınç, E. C.; Erdem, E. Organic Waste‐Derived Activated Carbons for Supercapacitor Applications: Advances in Synthesis Strategies and Electrochemical Performance Enhancement. physica status solidi (a) 2025. doi:10.1002/pssa.202400992
  • Vashchynskyi, V. Porous carbon materials derived from apricot pits for electrical energy storage devices and sorption technologies: a review of the precursors, preparation methods, and applications. Fullerenes, Nanotubes and Carbon Nanostructures 2025, 1–14. doi:10.1080/1536383x.2025.2501246

Patents

  • WANG LUXIANG; GONG XINYI; LUO WANXIA; JIA DIANZENG; GUO NANNAN; XU MENGJIAO; AI LILI. Multi-cavity intercommunicated graded porous carbon sphere, porous carbon sphere electrode and preparation method of porous carbon sphere electrode. CN 116375029 A, July 4, 2023.
Other Beilstein-Institut Open Science Activities