How and why plants and human N-glycans are different: Insight from molecular dynamics into the “glycoblocks” architecture of complex carbohydrates

Carl A. Fogarty, Aoife M. Harbison, Amy R. Dugdale and Elisa Fadda
Beilstein J. Org. Chem. 2020, 16, 2046–2056. https://doi.org/10.3762/bjoc.16.171

Supporting Information

Supporting Information File 1: Computational methods and supplementary figures and tables.
Format: PDF Size: 768.9 KB Download

Cite the Following Article

How and why plants and human N-glycans are different: Insight from molecular dynamics into the “glycoblocks” architecture of complex carbohydrates
Carl A. Fogarty, Aoife M. Harbison, Amy R. Dugdale and Elisa Fadda
Beilstein J. Org. Chem. 2020, 16, 2046–2056. https://doi.org/10.3762/bjoc.16.171

How to Cite

Fogarty, C. A.; Harbison, A. M.; Dugdale, A. R.; Fadda, E. Beilstein J. Org. Chem. 2020, 16, 2046–2056. doi:10.3762/bjoc.16.171

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 12.9 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Bennett, A. R.; Bojar, D. Syntactic Sugars: Crafting a Regular Expression Framework for Glycan Structures. Cold Spring Harbor Laboratory 2024. doi:10.1101/2024.02.01.578383
  • Evju, E.; Opsahl-Sorteberg, H.-G. A Short Review of Advances in Plant-Based Antigen Production Strategies and the Production of Viral Vaccine Antigens Derived from CRISPR/Cas9 Genome Edited N. benthamiana Plants for Enhanced Vaccine Efficacy. A Roadmap for Plant Genome Editing; Springer Nature Switzerland, 2023; pp 131–139. doi:10.1007/978-3-031-46150-7_8
  • Bergonzo, C.; Hoopes, J. T.; Kelman, Z.; Gallagher, D. T. Effects of glycans and hinge on dynamics in the IgG1 Fc. Journal of biomolecular structure & dynamics 2023, 1–9. doi:10.1080/07391102.2023.2270749
  • Shen, D.; Lu, X.; Li, W.; Zou, L.; Tong, Y.; Wang, L.; Rao, L.; Zhang, Y.; Hou, L.; Sun, G.; Chen, L. Identification and characterization of an α-1,3 mannosidase from Elizabethkingia meningoseptica and its potential attenuation impact on allergy associated with cross-reactive carbohydrate determinant. Biochemical and biophysical research communications 2023, 672, 17–26. doi:10.1016/j.bbrc.2023.06.035
  • Staszak, M.; Staszak, K. In silico approaches for carbohydrates. In silico Approaches to Macromolecular Chemistry; Elsevier, 2023; pp 129–155. doi:10.1016/b978-0-323-90995-2.00005-9
  • Krenn, M.; Pollice, R.; Guo, S. Y.; Aldeghi, M.; Cervera-Lierta, A.; Friederich, P.; Dos Passos Gomes, G.; Häse, F.; Jinich, A.; Nigam, A.; Yao, Z.; Aspuru-Guzik, A. On scientific understanding with artificial intelligence. Nature reviews. Physics 2022, 4, 761–769. doi:10.1038/s42254-022-00518-3
  • Perez, S.; Makshakova, O. Multifaceted Computational Modeling in Glycoscience. Chemical reviews 2022, 122, 15914–15970. doi:10.1021/acs.chemrev.2c00060
  • Fadda, E. Molecular simulations of complex carbohydrates and glycoconjugates. Current opinion in chemical biology 2022, 69, 102175. doi:10.1016/j.cbpa.2022.102175
  • Rao, R. M.; Dauchez, M.; Baud, S. How molecular modelling can better broaden the understanding of glycosylations. Current opinion in structural biology 2022, 75, 102393. doi:10.1016/j.sbi.2022.102393
  • Roy, R.; Poddar, S.; Sk, M. F.; Kar, P. Conformational preferences of triantennary and tetraantennary hybrid N-glycans in aqueous solution: Insights from 20 μs long atomistic molecular dynamic simulations. Journal of biomolecular structure & dynamics 2022, 41, 3305–3320. doi:10.1080/07391102.2022.2047109
  • Vítová, M.; Čížková, M.; Náhlík, V.; Řezanka, T. Changes in glycosyl inositol phosphoceramides during the cell cycle of the red alga Galdieria sulphuraria. Phytochemistry 2021, 194, 113025. doi:10.1016/j.phytochem.2021.113025
  • Aoki-Kinoshita, K. F.; Lisacek, F.; Karlsson, N.; Kolarich, D.; Packer, N. H. GlycoBioinformatics. Beilstein journal of organic chemistry 2021, 17, 2726–2728. doi:10.3762/bjoc.17.184
  • Veličković, D.; Becejac, T.; Mamedov, S.; Sharma, K.; Ambalavanan, N.; Alexandrov, T.; Anderton, C. R. Rapid Automated Annotation and Analysis of N-Glycan Mass Spectrometry Imaging Data Sets Using NGlycDB in METASPACE. Analytical chemistry 2021, 93, 13421–13425. doi:10.1021/acs.analchem.1c02347
  • Thomès, L.; Bojar, D. The Role of Fucose-Containing Glycan Motifs Across Taxonomic Kingdoms. Frontiers in molecular biosciences 2021, 8, 755577. doi:10.3389/fmolb.2021.755577
  • Thomès, L.; Bojar, D. The role of fucose-containing glycan motifs across taxonomic kingdoms. Cold Spring Harbor Laboratory 2021. doi:10.1101/2021.08.08.455599
  • Fogarty, C. A.; Fadda, E. Oligomannose N-Glycans 3D Architecture and Its Response to the FcγRIIIa Structural Landscape. The journal of physical chemistry. B 2021, 125, 2607–2616. doi:10.1021/acs.jpcb.1c00304
  • Fogarty, C. A.; Fadda, E. The oligomannose N-glycans 3D architecture and its response to the FcγRIIIa structural landscape. Cold Spring Harbor Laboratory 2021. doi:10.1101/2021.01.11.426234
  • Fadda, E. Understanding the Structure and Function of Viral Glycosylation by Molecular Simulations: State-of-the-Art and Recent Case Studies. Comprehensive Glycoscience; Elsevier, 2021; pp 405–415. doi:10.1016/b978-0-12-819475-1.00056-0
  • Fadda, E.
Other Beilstein-Institut Open Science Activities