A consensus-based and readable extension of Linear Code for Reaction Rules (LiCoRR)

Benjamin P. Kellman, Yujie Zhang, Emma Logomasini, Eric Meinhardt, Karla P. Godinez-Macias, Austin W. T. Chiang, James T. Sorrentino, Chenguang Liang, Bokan Bao, Yusen Zhou, Sachiko Akase, Isami Sogabe, Thukaa Kouka, Elizabeth A. Winzeler, Iain B. H. Wilson, Matthew P. Campbell, Sriram Neelamegham, Frederick J. Krambeck, Kiyoko F. Aoki-Kinoshita and Nathan E. Lewis
Beilstein J. Org. Chem. 2020, 16, 2645–2662. https://doi.org/10.3762/bjoc.16.215

Supporting Information

Supporting Information File 1: Supporting tables.
Format: ZIP Size: 634.6 KB Download

Cite the Following Article

A consensus-based and readable extension of Linear Code for Reaction Rules (LiCoRR)
Benjamin P. Kellman, Yujie Zhang, Emma Logomasini, Eric Meinhardt, Karla P. Godinez-Macias, Austin W. T. Chiang, James T. Sorrentino, Chenguang Liang, Bokan Bao, Yusen Zhou, Sachiko Akase, Isami Sogabe, Thukaa Kouka, Elizabeth A. Winzeler, Iain B. H. Wilson, Matthew P. Campbell, Sriram Neelamegham, Frederick J. Krambeck, Kiyoko F. Aoki-Kinoshita and Nathan E. Lewis
Beilstein J. Org. Chem. 2020, 16, 2645–2662. https://doi.org/10.3762/bjoc.16.215

How to Cite

Kellman, B. P.; Zhang, Y.; Logomasini, E.; Meinhardt, E.; Godinez-Macias, K. P.; Chiang, A. W. T.; Sorrentino, J. T.; Liang, C.; Bao, B.; Zhou, Y.; Akase, S.; Sogabe, I.; Kouka, T.; Winzeler, E. A.; Wilson, I. B. H.; Campbell, M. P.; Neelamegham, S.; Krambeck, F. J.; Aoki-Kinoshita, K. F.; Lewis, N. E. Beilstein J. Org. Chem. 2020, 16, 2645–2662. doi:10.3762/bjoc.16.215

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 13.9 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Liang, C.; Chiang, A. W. T.; Lewis, N. E. GlycoMME, a Markov modeling platform for studying N-glycosylation biosynthesis from glycomics data. STAR protocols 2023, 4, 102244. doi:10.1016/j.xpro.2023.102244
  • Aoki-Kinoshita, K. F. Reference Module in Life Sciences - Glycan Bioinformatics: Informatics Methods for Understanding Glycan Function. Encyclopedia of Cell Biology; Elsevier, 2023; pp 516–524. doi:10.1016/b978-0-12-821618-7.00002-x
  • Groth, T.; Diehl, A. D.; Gunawan, R.; Neelamegham, S. GlycoEnzOnto: a GlycoEnzyme pathway and molecular function ontology. Bioinformatics (Oxford, England) 2022, 38, 5413–5420. doi:10.1093/bioinformatics/btac704
  • Masterson, H. K.; Urashima, T.; Owens, R. A.; Hickey, R. M. Milk Oligosaccharides. Advanced Dairy Chemistry; Springer International Publishing, 2022; pp 261–296. doi:10.1007/978-3-030-92585-7_7
  • Sasmal, A.; Khan, N.; Khedri, Z.; Kellman, B. P.; Srivastava, S.; Verhagen, A.; Yu, H.; Bruntse, A. B.; Diaz, S.; Varki, N.; Beddoe, T.; Paton, A. W.; Paton, J. C.; Chen, X.; Lewis, N. E.; Varki, A. Simple and practical sialoglycan encoding system reveals vast diversity in nature and identifies a universal sialoglycan-recognizing probe derived from AB5 toxin B subunits. Glycobiology 2022, 32, 1101–1115. doi:10.1093/glycob/cwac057
  • Aoki-Kinoshita, K. F. Functions of Glycosylation and Related Web Resources for Its Prediction. Methods in molecular biology (Clifton, N.J.) 2022, 2499, 135–144. doi:10.1007/978-1-0716-2317-6_6
  • Groth, T.; Gunawan, R.; Diehl, A. D.; Neelamegham, S. GlycoEnzOnto: A GlycoEnzyme Pathway and Molecular Function Ontology. Cold Spring Harbor Laboratory 2022. doi:10.1101/2022.06.06.493779
  • Kellman, B. P.; Richelle, A.; Yang, J.-Y.; Chapla, D.; Chiang, A. W. T.; Najera, J. A.; Liang, C.; Fürst, A.; Bao, B.; Koga, N.; Mohammad, M. A.; Bruntse, A. B.; Haymond, M. W.; Moremen, K. W.; Bode, L.; Lewis, N. E. Elucidating Human Milk Oligosaccharide biosynthetic genes through network-based multi-omics integration. Nature communications 2022, 13, 2455. doi:10.1038/s41467-022-29867-4
  • Das, P. K.; Haokip, L. Low-density periodical burst correcting codes with decoding probability and detection capability. Journal of Applied Mathematics and Computing 2022, 68, 4537–4557. doi:10.1007/s12190-022-01716-z
  • Aoki-Kinoshita, K. F.; Lisacek, F.; Karlsson, N.; Kolarich, D.; Packer, N. H. GlycoBioinformatics. Beilstein journal of organic chemistry 2021, 17, 2726–2728. doi:10.3762/bjoc.17.184
  • Aoki-Kinoshita, K. F. Glycome informatics: using systems biology to gain mechanistic insights into glycan biosynthesis. Current Opinion in Chemical Engineering 2021, 32, 100683. doi:10.1016/j.coche.2021.100683
  • Sasmal, A.; Khan, N.; Khedri, Z.; Kellman, B. P.; Srivastava, S.; Verhagen, A.; Yu, H.; Bruntse, A. B.; Diaz, S.; Varki, N.; Beddoe, T. C.; Paton, A. W.; Paton, J. C.; Chen, X.; Lewis, N. E.; Varki, A. Simple and practical sialoglycan encoding system reveals vast diversity in nature and identifies a universal sialoglycan-recognizing probe derived from AB5 toxin B subunits. Cold Spring Harbor Laboratory 2021. doi:10.1101/2021.05.28.446191
  • McDonald, A. G.; Davey, G. P. Simulating the enzymes of ganglioside biosynthesis with Glycologue. Beilstein journal of organic chemistry 2021, 17, 739–748. doi:10.3762/bjoc.17.64
  • Kellman, B. P.; Lewis, N. E. Big-Data Glycomics: Tools to Connect Glycan Biosynthesis to Extracellular Communication. Trends in biochemical sciences 2020, 46, 284–300. doi:10.1016/j.tibs.2020.10.004
Other Beilstein-Institut Open Science Activities