Secondary metabolites of Bacillus subtilis impact the assembly of soil-derived semisynthetic bacterial communities

Heiko T. Kiesewalter, Carlos N. Lozano-Andrade, Mikael L. Strube and Ákos T. Kovács
Beilstein J. Org. Chem. 2020, 16, 2983–2998. https://doi.org/10.3762/bjoc.16.248

Supporting Information

Supporting Information File 1: Bacterial strains used in this study, 16S rRNA V3-V4 primer list, number of sequencing reads per sample, and supporting figures.
Format: PDF Size: 2.1 MB Download

Cite the Following Article

Secondary metabolites of Bacillus subtilis impact the assembly of soil-derived semisynthetic bacterial communities
Heiko T. Kiesewalter, Carlos N. Lozano-Andrade, Mikael L. Strube and Ákos T. Kovács
Beilstein J. Org. Chem. 2020, 16, 2983–2998. https://doi.org/10.3762/bjoc.16.248

How to Cite

Kiesewalter, H. T.; Lozano-Andrade, C. N.; Strube, M. L.; Kovács, Á. T. Beilstein J. Org. Chem. 2020, 16, 2983–2998. doi:10.3762/bjoc.16.248

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 9.7 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Chouaia, B.; Dittmer, J. A 2000-Year-Old Bacillus stercoris Strain Sheds Light on the Evolution of Cyclic Antimicrobial Lipopeptide Synthesis. Microorganisms 2024, 12, 338. doi:10.3390/microorganisms12020338
  • Cowled, M. S.; Phippen, C. B. W.; Kromphardt, K. J. K.; Clemmensen, S. E.; Frandsen, R. J. N.; Frisvad, J. C.; Larsen, T. O. Unveiling the Microbial Diversity and Associated Secondary Metabolism on Black Apples. Cold Spring Harbor Laboratory 2023. doi:10.1101/2023.11.02.565319
  • Lozano-Andrade, C. N.; Nogueira, C. G.; Henriksen, N. N. S. E.; Wibowo, M.; Jarmusch, S. A.; Kovács, Á. T. Establishment of a transparent soil system to study Bacillus subtilis chemical ecology. ISME communications 2023, 3, 110. doi:10.1038/s43705-023-00318-5
  • Angelini, L. L.; Dos Santos, R. A. C.; Fox, G.; Paruthiyil, S.; Gozzi, K.; Shemesh, M.; Chai, Y. Pulcherrimin protects Bacillus subtilis against oxidative stress during biofilm development. NPJ biofilms and microbiomes 2023, 9, 50. doi:10.1038/s41522-023-00418-z
  • Poppeliers, S. W.; Sánchez-Gil, J. J.; de Jonge, R. Microbes to support plant health: understanding bioinoculant success in complex conditions. Current opinion in microbiology 2023, 73, 102286. doi:10.1016/j.mib.2023.102286
  • Miao, S.; Liang, J.; Xu, Y.; Yu, G.; Shao, M. Bacillaene, sharp objects consist in the arsenal of antibiotics produced by Bacillus. Journal of cellular physiology 2023. doi:10.1002/jcp.30974
  • Henriksen, N. N. S. E.; Schostag, M. D.; Balder, S. R.; Bech, P. K.; Strube, M. L.; Sonnenschein, E. C.; Gram, L. The ability of Phaeobacter inhibens to produce tropodithietic acid influences the community dynamics of a microalgal microbiome. ISME communications 2022, 2, 109. doi:10.1038/s43705-022-00193-6
  • Gutierrez, M. M.; Cameron-Harp, M. V.; Chakraborty, P. P.; Stallbaumer-Cyr, E. M.; Morrow, J. A.; Hansen, R. R.; Derby, M. M. Investigating a microbial approach to water conservation: Effects of Bacillus subtilis and Surfactin on evaporation dynamics in loam and sandy loam soils. Frontiers in Sustainable Food Systems 2022, 6. doi:10.3389/fsufs.2022.959591
  • Jautzus, T.; van Gestel, J.; Kovács, Á. T. Complex extracellular biology drives surface competition during colony expansion in Bacillus subtilis. The ISME journal 2022, 16, 2320–2328. doi:10.1038/s41396-022-01279-8
  • Zhang, T.; Zhou, Q. Using large-scale multi-module NRPS to heterologously prepare highly efficient lipopeptide biosurfactants in recombinant Escherichia coli. Enzyme and microbial technology 2022, 159, 110068. doi:10.1016/j.enzmictec.2022.110068
  • Mahapatra, S.; Yadav, R.; Ramakrishna, W. Bacillus subtilis impact on plant growth, soil health and environment: Dr. Jekyll and Mr. Hyde. Journal of applied microbiology 2022, 132, 3543–3562. doi:10.1111/jam.15480
  • Guo, S.; Tao, C.; Jousset, A.; Xiong, W.; Wang, Z.; Shen, Z.; Wang, B.; Xu, Z.; Gao, Z.; Liu, S.; Li, R.; Ruan, Y.; Shen, Q.; Kowalchuk, G. A.; Geisen, S. Trophic interactions between predatory protists and pathogen-suppressive bacteria impact plant health. The ISME journal 2022, 16, 1932–1943. doi:10.1038/s41396-022-01244-5
  • Jautzus, T.; van Gestel, J.; Kovács, Á. T. Complex extracellular biology drives surface competition inBacillus subtilis. Cold Spring Harbor Laboratory 2022. doi:10.1101/2022.02.28.482363
  • Olasinbo, O. B.; Sylvanus, C. U.; Peters, O. O. Antibiotic-producing bacteria isolated from some natural habitats in the Federal Capital Territory (FCT), Nigeria. African Journal of Microbiology Research 2022, 16, 43–55. doi:10.5897/ajmr2021.9587
  • Lozano-Andrade, C. N.; Nogueira, C. G.; Wibowo, M.; Kovács, Á. T. Establishment of a transparent soil system to study Bacillus subtilis chemical ecology. Cold Spring Harbor Laboratory 2022. doi:10.1101/2022.01.10.475645
  • Kalamara, M.; Stanley-Wall, N. R. The Intertwined Roles of Specialized Metabolites within the Bacillus subtilis Biofilm. Journal of bacteriology 2021, 203, e0043121. doi:10.1128/jb.00431-21
  • Molina-Santiago, C.; de Vicente, A.; Romero, D. Bacterial extracellular matrix as a natural source of biotechnologically multivalent materials. Computational and structural biotechnology journal 2021, 19, 2796–2805. doi:10.1016/j.csbj.2021.05.008
Other Beilstein-Institut Open Science Activities