Fabclavine diversity in Xenorhabdus bacteria

Sebastian L. Wenski, Harun Cimen, Natalie Berghaus, Sebastian W. Fuchs, Selcuk Hazir and Helge B. Bode
Beilstein J. Org. Chem. 2020, 16, 956–965. https://doi.org/10.3762/bjoc.16.84

Supporting Information

Supporting Information File 1: Material and methods, supplementary figures and tables, and MALDI–HRMS and MALDI–MS2 spectra.
Format: PDF Size: 4.7 MB Download

Cite the Following Article

Fabclavine diversity in Xenorhabdus bacteria
Sebastian L. Wenski, Harun Cimen, Natalie Berghaus, Sebastian W. Fuchs, Selcuk Hazir and Helge B. Bode
Beilstein J. Org. Chem. 2020, 16, 956–965. https://doi.org/10.3762/bjoc.16.84

How to Cite

Wenski, S. L.; Cimen, H.; Berghaus, N.; Fuchs, S. W.; Hazir, S.; Bode, H. B. Beilstein J. Org. Chem. 2020, 16, 956–965. doi:10.3762/bjoc.16.84

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 131.6 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Bozhüyük, K. A. J.; Präve, L.; Kegler, C.; Schenk, L.; Kaiser, S.; Schelhas, C.; Shi, Y.-N.; Kuttenlochner, W.; Schreiber, M.; Kandler, J.; Alanjary, M.; Mohiuddin, T. M.; Groll, M.; Hochberg, G. K. A.; Bode, H. B. Evolution-inspired engineering of nonribosomal peptide synthetases. Science (New York, N.Y.) 2024, 383, eadg4320. doi:10.1126/science.adg4320
  • Touray, M.; Cimen, H.; Bode, E.; Bode, H. B.; Hazir, S. Effects of Xenorhabdus and Photorhabdus bacterial metabolites on the ovipositional activity of Aedes albopictus. Journal of Pest Science 2024. doi:10.1007/s10340-024-01760-7
  • GÜLCÜ, B.; ALTIN, N. Alternaria brassicicola'ya karşı Trans-cinnamic Asit ve Xenorhabdus szentirmaii'nin Antifungal Metabolitlerinin Kullanım Potansiyellerinin Araştırılması. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 2024, 12, 365–374. doi:10.29130/dubited.1233579
  • Duan, J.; Yuan, B.; Jia, F.; Li, X.; Chen, C.; Li, G. Development of an Efficient and Seamless Genetic Manipulation Method for Xenorhabdus and Its Application for Enhancing the Production of Fabclavines. Journal of agricultural and food chemistry 2023, 72, 274–283. doi:10.1021/acs.jafc.3c04136
  • Long, Q.; Zhou, W.; Zhou, H.; Tang, Y.; Chen, W.; Liu, Q.; Bian, X. Polyamine-containing natural products: structure, bioactivity, and biosynthesis. Natural product reports 2023. doi:10.1039/d2np00087c
  • Touray, M.; Cimen, H.; Bode, E.; Bode, H. B.; Hazir, S. Effects of Xenorhabdus and Photorhabdus bacterial metabolites on the ovipositional activity of Aedes albopictus. Research Square Platform LLC 2023. doi:10.21203/rs.3.rs-3424908/v1
  • Fodor, A.; Hess, C.; Ganas, P.; Boros, Z.; Kiss, J.; Makrai, L.; Dublecz, K.; Pál, L.; Fodor, L.; Sebestyén, A.; Klein, M. G.; Tarasco, E.; Kulkarni, M. M.; McGwire, B. S.; Vellai, T.; Hess, M. Antimicrobial Peptides (AMP) in the Cell-Free Culture Media of Xenorhabdus budapestensis and X. szentirmaii Exert Anti-Protist Activity against Eukaryotic Vertebrate Pathogens including Histomonas meleagridis and Leishmania donovani Species. Antibiotics (Basel, Switzerland) 2023, 12, 1462. doi:10.3390/antibiotics12091462
  • Yuan, B.; Li, B.; Shen, H.; Duan, J.; Jia, F.; Maimaiti, Y.; Li, Y.; Li, G. Identification of fabclavine derivatives, Fcl-7 and Fcl-8, from Xenorhabdus budapestensis as major antifungal natural products against Rhizoctonia solani. Journal of applied microbiology 2023, 134. doi:10.1093/jambio/lxad190
  • Ujszegi, J.; Boros, Z.; Fodor, A.; Vajna, B.; Hettyey, A. Metabolites of Xenorhabdus bacteria are potent candidates for mitigating amphibian chytridiomycosis. AMB Express 2023, 13, 88. doi:10.1186/s13568-023-01585-0
  • Li, B.; Yuan, B.; Duan, J.; Qin, Y.; Shen, H.; Ren, J.; Francis, F.; Chen, M.; Li, G. Identification of Fcl-29 as an Effective Antifungal Natural Product against Fusarium graminearum and Combinatorial Engineering Strategy for Improving Its Yield. Journal of agricultural and food chemistry 2023, 71, 5554–5564. doi:10.1021/acs.jafc.2c09012
  • Fodor, A.; Vellai, T.; Hess, C.; Makrai, L.; Dublecz, K.; Pál, L.; Molnár, A.; Klein, M. G.; Tarasco, E.; Józsa, S.; Ganas, P.; Hess, M. XENOFOOD-An Autoclaved Feed Supplement Containing Autoclavable Antimicrobial Peptides-Exerts Anticoccidial GI Activity, and Causes Bursa Enlargement, but Has No Detectable Harmful Effects in Broiler Cockerels despite In Vitro Detectable Cytotoxicity on LHM Cells. Pathogens (Basel, Switzerland) 2023, 12, 458. doi:10.3390/pathogens12030458
  • Yüksel, E.; Ormanoğlu, N.; İmren, M.; Canhilal, R. Assessment of biocontrol potential of different Steinernema species and their bacterial symbionts, Xenorhabdus species against larvae of almond moth, Ephestia cautella (Walker). Journal of Stored Products Research 2023, 101, 102082. doi:10.1016/j.jspr.2023.102082
  • Vicente-Díez, I.; Pou, A.; Campos-Herrera, R. Xenorhabdus- and Photorhabdus-based products. Development and Commercialization of Biopesticides; Elsevier, 2023; pp 81–101. doi:10.1016/b978-0-323-95290-3.00012-1
  • Cimen, H. The role of Photorhabdus-induced bioluminescence and red cadaver coloration on the deterrence of insect scavengers from entomopathogenic nematode-infected cadavers. Journal of invertebrate pathology 2022, 196, 107871. doi:10.1016/j.jip.2022.107871
  • Zhang, Y.; Wang, F.; Zhao, Z. Metabonomics reveals that entomopathogenic nematodes mediate tryptophan metabolites that kill host insects. Frontiers in microbiology 2022, 13, 1042145. doi:10.3389/fmicb.2022.1042145
  • Ünal, M.; Yüksel, E.; Canhilal, R. Biocontrol potential of cell suspensions and cell-free superntants of different Xenorhabdus and Photorhabdus bacteria against the different larval instars of Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae). Experimental parasitology 2022, 242, 108394. doi:10.1016/j.exppara.2022.108394
  • Awori, R. M. Nematophilic bacteria associated with entomopathogenic nematodes and drug development of their biomolecules. Frontiers in microbiology 2022, 13, 993688. doi:10.3389/fmicb.2022.993688
  • Abd-Elgawad, M. M. M. Xenorhabdus spp.: An Overview of the Useful Facets of Mutualistic Bacteria of Entomopathogenic Nematodes. Life (Basel, Switzerland) 2022, 12, 1360. doi:10.3390/life12091360
  • Tomar, P.; Thakur, N.; Yadav, A. N. Endosymbiotic microbes from entomopathogenic nematode (EPNs) and their applications as biocontrol agents for agro-environmental sustainability. Egyptian Journal of Biological Pest Control 2022, 32. doi:10.1186/s41938-022-00579-7
  • Gulsen, S. H.; Tileklioglu, E.; Bode, E.; Cimen, H.; Ertabaklar, H.; Ulug, D.; Ertug, S.; Wenski, S. L.; Touray, M.; Hazir, C.; Bilecenoglu, D. K.; Yildiz, I.; Bode, H. B.; Hazir, S. Antiprotozoal activity of different Xenorhabdus and Photorhabdus bacterial secondary metabolites and identification of bioactive compounds using the easyPACId approach. Scientific reports 2022, 12, 10779. doi:10.1038/s41598-022-13722-z
Other Beilstein-Institut Open Science Activities