Cite the Following Article
Constrained thermoresponsive polymers – new insights into fundamentals and applications
Patricia Flemming, Alexander S. Münch, Andreas Fery and Petra Uhlmann
Beilstein J. Org. Chem. 2021, 17, 2123–2163.
https://doi.org/10.3762/bjoc.17.138
How to Cite
Flemming, P.; Münch, A. S.; Fery, A.; Uhlmann, P. Beilstein J. Org. Chem. 2021, 17, 2123–2163. doi:10.3762/bjoc.17.138
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 535.1 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Leite, D. C.; Ribeiro, A. d. C.; de Oliveira, T. E.; da Silveira, N. P. Interaction of thermoresponsive polymers with hydrophobic compounds: from phase transition to design strategies. Journal of physics. Condensed matter : an Institute of Physics journal 2025, 37, 473004. doi:10.1088/1361-648x/ae1c89
- Ayivi, R. D.; Adesanmi, B. O.; Torres, M. J.; Obare, S. O.; Gomes, C. L.; McLamore, E. S. Polymer brushes for sensing in food systems: Opportunities and challenges span from organophosphorus pesticide to pathogen detection. Sensors and Actuators Reports 2025, 10, 100368. doi:10.1016/j.snr.2025.100368
- Stetsyshyn, Y.; Ohar, H.; Budkowski, A.; Lazzara, G. Molecular Design and Role of the Dynamic Hydrogen Bonds and Hydrophobic Interactions in Temperature-Switchable Polymers: From Understanding to Applications. Polymers 2025, 17, 1580. doi:10.3390/polym17111580
- Martin, S. S.; Gan, L.; Zhang, L.; Yang, X.; Tan, Z.; Shi, H.; Long, L.; Li, H. Cellulose nanocrystal-based intelligent hydrogels: Innovations, challenges, and prospective application in advanced wound healing. International journal of biological macromolecules 2025, 316, 144752. doi:10.1016/j.ijbiomac.2025.144752
- Uversky, V. N.; Tripathi, T.; Coskuner-Weber, O. Thermoresponsive intrinsically disordered protein polymers. The Three Functional States of Proteins; Elsevier, 2025; pp 333–351. doi:10.1016/b978-0-443-21809-5.00016-8
- de Barros, H. R.; Theisen, M.; Durigon, M. C.; Leite, D. C.; Piovan, L.; Riegel‐Vidotti, I. C. Smart Materials for Biocatalysis Regulation through Thermoresponsive Polymers. ChemCatChem 2024, 16. doi:10.1002/cctc.202400699
- Hofmaier, M.; Flemming, P.; Guskova, O.; Münch, A. S.; Uhlmann, P.; Müller, M. Swelling and Orientation Behavior of End-Grafted Polymer Chains by In Situ Attenuated Total Reflection Fourier Transform Infrared Spectroscopy Complementing In Situ Ellipsometry. Langmuir : the ACS journal of surfaces and colloids 2023, 39, 16219–16230. doi:10.1021/acs.langmuir.3c01453
- Gjerde, N. S.; Del Giudice, A.; Zhu, K.; Knudsen, K. D.; Galantini, L.; Schillén, K.; Nyström, B. Synthesis and Characterization of a Thermoresponsive Copolymer with an LCST-UCST-like Behavior and Exhibiting Crystallization. ACS omega 2023, 8, 31145–31154. doi:10.1021/acsomega.3c03162
- Wei, Z.; Yu, L.; Lu, S.; Zhao, Y. Reversibly thermo-responsive materials applied in lithium batteries. Energy Storage Materials 2023, 61, 102901. doi:10.1016/j.ensm.2023.102901
- Zhou, H.; Matoba, F.; Matsuno, R.; Wakayama, Y.; Yamada, T. Direct Conversion of Phase-Transition Entropy into Electrochemical Thermopower and the Peltier Effect. Advanced materials (Deerfield Beach, Fla.) 2023, 35, e2303341. doi:10.1002/adma.202303341
- Mendrek, B.; Oleszko-Torbus, N.; Teper, P.; Kowalczuk, A. Towards next generation polymer surfaces: Nano- and microlayers of star macromolecules and their design for applications in biology and medicine. Progress in Polymer Science 2023, 139, 101657. doi:10.1016/j.progpolymsci.2023.101657
- Ruzzi, V.; Buzzaccaro, S.; Piazza, R. Thermal Lens Measurements of Thermal Expansivity in Thermosensitive Polymer Solutions. Polymers 2023, 15, 1283. doi:10.3390/polym15051283
- Zbonikowski, R.; Mente, P.; Bończak, B.; Paczesny, J. Adaptive 2D and Pseudo-2D Systems: Molecular, Polymeric, and Colloidal Building Blocks for Tailored Complexity. Nanomaterials (Basel, Switzerland) 2023, 13, 855. doi:10.3390/nano13050855
- Gęca, M.; Wiśniewska, M.; Urban, T.; Nowicki, P. Temperature Effect on Ionic Polymers Removal from Aqueous Solutions Using Activated Carbons Obtained from Biomass. Materials (Basel, Switzerland) 2022, 16, 350. doi:10.3390/ma16010350
- Münch, A. S.; Simon, F.; Merlitz, H.; Uhlmann, P. Investigation of an oleophobic-hydrophilic polymer brush with switchable wettability for easy-to-clean coatings. European Polymer Journal 2022, 180, 111629. doi:10.1016/j.eurpolymj.2022.111629
- Flemming, P.; Fery, A.; Münch, A. S.; Uhlmann, P. Does Chain Confinement Affect Thermoresponsiveness? A Comparative Study of the LCST and Induced UCST Transition of Tailored Grafting-to Polyelectrolyte Brushes. Macromolecules 2022, 55, 6775–6786. doi:10.1021/acs.macromol.2c01134
- Aliakseyeu, A.; Hlushko, R.; Sukhishvili, S. A. Nonionic star polymers with upper critical solution temperature in aqueous solutions. Polymer Chemistry 2022, 13, 2637–2650. doi:10.1039/d2py00216g
- Sixdenier, L.; Augé, A.; Zhao, Y.; Marie, E.; Tribet, C. UCST-Type Polymer Capsules Formed by Interfacial Complexation. ACS macro letters 2022, 11, 651–656. doi:10.1021/acsmacrolett.2c00021
- Bariwal, J.; Ma, H.; Altenberg, G. A.; Liang, H. Nanodiscs: a versatile nanocarrier platform for cancer diagnosis and treatment. Chemical Society reviews 2022, 51, 1702–1728. doi:10.1039/d1cs01074c
- Pavlenko, S. A.; Larin, D. E.; Govorun, E. N. Self-assembly of hydrophobic-amphiphilic diblock copolymers in solution. Journal of physics. Condensed matter : an Institute of Physics journal 2022, 34, 125001. doi:10.1088/1361-648x/ac462c