19F NMR as a tool in chemical biology

Diana Gimenez, Aoife Phelan, Cormac D. Murphy and Steven L. Cobb
Beilstein J. Org. Chem. 2021, 17, 293–318. https://doi.org/10.3762/bjoc.17.28

Cite the Following Article

19F NMR as a tool in chemical biology
Diana Gimenez, Aoife Phelan, Cormac D. Murphy and Steven L. Cobb
Beilstein J. Org. Chem. 2021, 17, 293–318. https://doi.org/10.3762/bjoc.17.28

How to Cite

Gimenez, D.; Phelan, A.; Murphy, C. D.; Cobb, S. L. Beilstein J. Org. Chem. 2021, 17, 293–318. doi:10.3762/bjoc.17.28

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 11.7 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Costantino, A.; Pham, L. B. T.; Barbieri, L.; Calderone, V.; Ben-Nissan, G.; Sharon, M.; Banci, L.; Luchinat, E. Controlling the incorporation of fluorinated amino acids in human cells and its structural impact. Protein science : a publication of the Protein Society 2024, 33, e4910. doi:10.1002/pro.4910
  • Matwani, K.; Cornish, J.; DeBenedictis, E. A.; Heller, G. T. Micromolar fluoride contamination arising from glass NMR tubes and a simple solution for biomolecular applications. Cold Spring Harbor Laboratory 2024. doi:10.1101/2024.02.12.579991
  • Batarchuk, V.; Shepelytskyi, Y.; Grynko, V.; Kovacs, A. H.; Hodgson, A.; Rodriguez, K.; Aldossary, R.; Talwar, T.; Hasselbrink, C.; Ruset, I. C.; DeBoef, B.; Albert, M. S. Hyperpolarized Xenon-129 Chemical Exchange Saturation Transfer (HyperCEST) Molecular Imaging: Achievements and Future Challenges. International journal of molecular sciences 2024, 25, 1939. doi:10.3390/ijms25031939
  • Frere, G. A.; Hasabnis, A.; Francisco, C. B.; Suleiman, M.; Alimowska, O.; Rahmatullah, R.; Gould, J.; Su, C. Y.-C.; Voznyy, O.; Gunning, P. T.; Basso, E. A.; Prosser, R. S. Next-Generation Tags for Fluorine Nuclear Magnetic Resonance: Designing Amplification of Chemical Shift Sensitivity. Journal of the American Chemical Society 2024, 146, 3052–3064. doi:10.1021/jacs.3c09730
  • Chai, Z.; Li, C. In-Cell 19 F NMR of Proteins: Recent Progress and Future Opportunities. Chemistry (Weinheim an der Bergstrasse, Germany) 2024, e202303988. doi:10.1002/chem.202303988
  • Li, Y.; Huang, W.-S.; Zhang, L.; Su, D.; Xu, H.; Xue, X.-S. Prediction of 19F NMR chemical shift by machine learning. Artificial Intelligence Chemistry 2024, 2, 100043. doi:10.1016/j.aichem.2024.100043
  • Simonet, B.; Herrscher, V.; Witjaksono, C.; Chaignon, P.; Massicot, F.; Vasse, J.-L.; Seemann, M.; Behr, J.-B. Carbohydrate-Templated Syntheses of Trifluoromethyl-Substituted MEP Analogues for the Study of the Methylerythritol Phosphate Pathway. The Journal of organic chemistry 2023, 88, 15832–15843. doi:10.1021/acs.joc.3c01910
  • Prosser, R. S. A beginner's guide to 19F NMR and its role in drug screening. Canadian Journal of Chemistry 2023, 101, 758–764. doi:10.1139/cjc-2023-0028
  • Rusakova, I. L.; Ukhanev, S. A.; Rusakov, Y. Y. On the relativistic effects on 19F nuclear magnetic resonance chemical shifts in the presence of iodine atoms. Journal of Fluorine Chemistry 2023, 271, 110188. doi:10.1016/j.jfluchem.2023.110188
  • Baunis, H.; Pieber, B. Formal Radical Deoxyfluorination of Oxalate‐Activated Alcohols Triggered by the Selectfluor‐DMAP Charge‐Transfer Complex. European Journal of Organic Chemistry 2023, 26. doi:10.1002/ejoc.202300769
  • Poškaitė, G.; Wheatley, D. E.; Wells, N.; Linclau, B.; Sinnaeve, D. Obtaining Pure 1H NMR Spectra of Individual Pyranose and Furanose Anomers of Reducing Deoxyfluorinated Sugars. The Journal of organic chemistry 2023, 88, 13908–13925. doi:10.1021/acs.joc.3c01503
  • Gregorc, J.; Lensen, N.; Chaume, G.; Iskra, J.; Brigaud, T. Trifluoromethylthiolation of Tryptophan and Tyrosine Derivatives: A Tool for Enhancing the Local Hydrophobicity of Peptides. The Journal of organic chemistry 2023, 88, 13169–13177. doi:10.1021/acs.joc.3c01373
  • Miles, S. A.; Nillama, J. A.; Hunter, L. Tinker, Tailor, Soldier, Spy: The Diverse Roles That Fluorine Can Play within Amino Acid Side Chains. Molecules (Basel, Switzerland) 2023, 28, 6192. doi:10.3390/molecules28176192
  • Prosser, R. S.; Alonzi, N. A. Discerning conformational dynamics and binding kinetics of GPCRs by 19F NMR. Current opinion in pharmacology 2023, 72, 102377. doi:10.1016/j.coph.2023.102377
  • Savchenko, V. S.; Geraschenko, O. V.; Khodakivskyi, P. V.; Druzhenko, T. V.; Moskvina, V. S.; Ryabukhin, S. V.; Volochnyuk, D. M. Straightforward trifluoroacylation of oxazoles – scalable, cost-effective way toward diverse 2-(trifluoroacetyl)oxazoles. Chemistry of Heterocyclic Compounds 2023, 59, 472–478. doi:10.1007/s10593-023-03218-7
  • Dalvit, C.; Gmür, I.; Rößler, P.; Gossert, A. D. Affinity measurement of strong ligands with NMR spectroscopy: Limitations and ways to overcome them. Progress in nuclear magnetic resonance spectroscopy 2023, 138-139, 52–69. doi:10.1016/j.pnmrs.2023.07.001
  • Miller, S. L.; Gaidamauskas, E.; Altaf, A. A.; Crans, D. C.; Levinger, N. E. Where Are Sodium Ions in AOT Reverse Micelles? Fluoride Anion Probes Nanoconfined Ions by 19F Nuclear Magnetic Resonance Spectroscopy. Langmuir : the ACS journal of surfaces and colloids 2023, 39, 7811–7819. doi:10.1021/acs.langmuir.3c00649
  • Stockman, B. J.; Ventura, C. A.; Deykina, V. S.; Khayan Lontscharitsch, N.; Saljanin, E.; Gil, A.; Canestrari, M.; Mahmood, M. Direct Measurement of Nucleoside Ribohydrolase Enzyme Activities in Trichomonas vaginalis Cells Using 19F and 13C-Edited 1H NMR Spectroscopy. Analytical chemistry 2023, 95, 5300–5306. doi:10.1021/acs.analchem.2c05330
  • Elena-Real, C. A.; Sagar, A.; Urbanek, A.; Popovic, M.; Morató, A.; Estaña, A.; Fournet, A.; Doucet, C.; Lund, X. L.; Shi, Z.-D.; Costa, L.; Thureau, A.; Allemand, F.; Swenson, R. E.; Milhiet, P.-E.; Crehuet, R.; Barducci, A.; Cortés, J.; Sinnaeve, D.; Sibille, N.; Bernadó, P. The structure of pathogenic huntingtin exon 1 defines the bases of its aggregation propensity. Nature structural & molecular biology 2023, 30, 309–320. doi:10.1038/s41594-023-00920-0
  • Audsley, G.; Carpenter, H.; Essien, N. B.; Lai-Morrice, J.; Al-Hilaly, Y.; Serpell, L. C.; Akien, G. R.; Tizzard, G. J.; Coles, S. J.; Ulldemolins, C. P.; Kostakis, G. E. Chiral Co3Y Propeller-Shaped Chemosensory Platforms Based on 19F-NMR. Inorganic chemistry 2023, 62, 2680–2693. doi:10.1021/acs.inorgchem.2c03737
Other Beilstein-Institut Open Science Activities