Supporting Information
| Supporting Information File 1: Full experimental procedures and compound characterization. | ||
| Format: PDF | Size: 934.3 KB | Download |
Cite the Following Article
A Se···O bonding catalysis approach to the synthesis of calix[4]pyrroles
Qingzhe Tong, Zhiguo Zhao and Yao Wang
Beilstein J. Org. Chem. 2022, 18, 325–330.
https://doi.org/10.3762/bjoc.18.36
How to Cite
Tong, Q.; Zhao, Z.; Wang, Y. Beilstein J. Org. Chem. 2022, 18, 325–330. doi:10.3762/bjoc.18.36
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 8.0 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Gao, G.; Xie, D.; Zhou, P. Chalcogen Bonding Catalysis in Organic Synthesis. Asian Journal of Organic Chemistry 2025, 14. doi:10.1002/ajoc.202500098
- Kaur, H.; Ahuja, H.; Arevalo, R. Triethoxysilane-Catalyzed Single and Sequential Regioselective Hydroboration of Terminal Alkynes: Sustainable Access to E-Alkenylboronate and Alkyl Gem-Diboronate Esters by Non-Covalent Interactions. ACS Catalysis 2025, 15, 976–981. doi:10.1021/acscatal.4c06845
- Yuan, X.; Bao, L.; Zhao, Z.; Wang, Y. Chalcogen Bonding Catalysis of the Cloke-Wilson Rearrangement. Chemistry (Weinheim an der Bergstrasse, Germany) 2023, 29, e202203822. doi:10.1002/chem.202203822
- Wang, Z.; Zhao, C.; Li, X.; Shi, B.; Zeng, Y. Neutral Monodentate and Hypervalent Chalcogen Bond Catalysis on the Intramolecular Rauhut-Currier Reaction of Bis(enones): A DFT Study. Chemistry (Weinheim an der Bergstrasse, Germany) 2023, 29, e202300171. doi:10.1002/chem.202300171
- Zhao, Z.; Wang, Y. Chalcogen Bonding Catalysis with Phosphonium Chalcogenide (PCH). Accounts of chemical research 2023, 56, 608–621. doi:10.1021/acs.accounts.3c00009
- Dhumale, B.; Bhatt, K. D.; Patel, N.; Modi, K. Reconnoitering the dynamics-calix[4]pyrrole: A heights in research and technology. Results in Chemistry 2023, 5, 100881. doi:10.1016/j.rechem.2023.100881
- Chen, H.; Frontera, A.; Ángeles Gutiérrez López, M.; Sakai, N.; Matile, S. Pnictogen‐Bonding Catalysts, Compared to Tetrel‐Bonding Catalysts: More Than Just Weak Lewis Acids. Helvetica Chimica Acta 2022, 105. doi:10.1002/hlca.202200119
- Rather, I. A.; Ali, R.; Ali, A. Recent developments in calix[4]pyrrole (C4P)-based supramolecular functional systems. Organic Chemistry Frontiers 2022, 9, 6416–6440. doi:10.1039/d2qo01298g
- Ballester, P.; Wang, Q.-Q.; Gaeta, C. Supramolecular approaches to mediate chemical reactivity. Beilstein journal of organic chemistry 2022, 18, 1463–1465. doi:10.3762/bjoc.18.152
- Chen, H.; Li, T.-R.; Sakai, N.; Besnard, C.; Guénée, L.; Pupier, M.; Viger-Gravel, J.; Tiefenbacher, K.; Matile, S. Decoded fingerprints of hyperresponsive, expanding product space: polyether cascade cyclizations as tools to elucidate supramolecular catalysis. Chemical science 2022, 13, 10273–10280. doi:10.1039/d2sc03991e
- Zhao, C.; Chen, D.; Wang, Z.; Zeng, Y. Chalcogen bond in organocatalysis: bonding characteristics, catalytic mechanisms, and catalyst design. Coordination Chemistry Reviews 549, 217269. doi:10.1016/j.ccr.2025.217269