Earth-abundant 3d transition metals on the rise in catalysis

Nikolaos Kaplaneris and Lutz Ackermann
Beilstein J. Org. Chem. 2022, 18, 86–88. https://doi.org/10.3762/bjoc.18.8

Cite the Following Article

Earth-abundant 3d transition metals on the rise in catalysis
Nikolaos Kaplaneris and Lutz Ackermann
Beilstein J. Org. Chem. 2022, 18, 86–88. https://doi.org/10.3762/bjoc.18.8

How to Cite

Kaplaneris, N.; Ackermann, L. Beilstein J. Org. Chem. 2022, 18, 86–88. doi:10.3762/bjoc.18.8

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 6.9 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Das, A.; Gosh, R. Effect of interionic interaction on atomic diffusion of liquid 3 d transition metals: A theoretical and simulation based study. Physica B: Condensed Matter 2025, 417982. doi:10.1016/j.physb.2025.417982
  • Halder, A.; Singh, T.; Saha, A.; Ghosh, S.; De Sarkar, S. Unprecedented Copper/Iron-Cocatalyzed Homocoupling of Propargyl Ethers to Conjugated Benzofurans. JACS Au 2025, 5, 4963–4971. doi:10.1021/jacsau.5c00908
  • Mohanty, A.; Kenguva, G.; Dandela, R.; Daw, P. Nickel‐Catalyzed Selective Hydrazoarenes and Aminoarenes Formation from Azoarenes Using Ammonia–Borane. ChemCatChem 2025, 17. doi:10.1002/cctc.202501005
  • Mnyango, J. I.; Nyoni, B.; Mama, N.; Fouda-Mbanga, B. G.; Tywabi-Ngeva, Z.; Hlangothi, S. P. Polybutene, polyisobutylene, and beyond: a comprehensive review of synthesis to sustainability. Materials Advances 2025, 6, 5339–5390. doi:10.1039/d5ma00392j
  • Yao, S.-Y.; Villa, M.; Zheng, Y.; Fiorentino, A.; Ventura, B.; Ivlev, S. I.; Ceroni, P.; Meggers, E. Cobalt catalyst with exclusive metal-centered chirality for asymmetric photocatalysis. Nature communications 2025, 16, 6635. doi:10.1038/s41467-025-61727-9
  • Ahmad, I.; Kedhim, M.; Jadeja, Y.; Sangwan, G.; V, K.; Kashyap, A.; Shomurotova, S.; Kazemi, M.; Javahershenas, R. A comprehensive review on carbonylation reactions: catalysis by magnetic nanoparticle-supported transition metals. Nanoscale advances 2025, 7, 3189–3209. doi:10.1039/d5na00040h
  • Sead, F. F.; Jain, V.; Ballal, S.; Singh, A.; Devi, A.; Chandra Sharma, G.; Joshi, K. K.; Kazemi, M.; Javahershenas, R. Research on transition metals for the multicomponent synthesis of benzo-fused γ-lactams. RSC advances 2025, 15, 2334–2346. doi:10.1039/d4ra08798d
  • Lad, B. S.; Mandal, P. K.; Chakrawarti, R.; Katukojvala, S. Copper-enalcarbenoids: Rapid access to 1,7-disubstituted indoles via [4+2] benzannulation between diazoenals and N-substituted pyrroles. Tetrahedron Letters 2024, 151, 155331. doi:10.1016/j.tetlet.2024.155331
  • Dupommier, D.; Besset, T. New trends for transition metal-catalyzed ortho/ipso difunctionalizations of arenes. Chem 2024, 10, 2651–2665. doi:10.1016/j.chempr.2024.07.003
  • Smirnov, I. V.; Biriukov, K. O.; Shvydkiy, N. V.; Perekalin, D. S.; Afanasyev, O. I.; Chusov, D. Air-Stable Arene Manganese Complexes as Catalysts for the Syngas-Assisted Direct Reductive Amination, Cyanation of Aldehyde, and CO2 Fixation by Epoxide with High Functional Groups Tolerance. The Journal of organic chemistry 2024, 89, 10338–10343. doi:10.1021/acs.joc.4c00842
  • Lewandowski, D.; Hreczycho, G. Selective Hydrosilylation and Hydroboration of Allenes Catalyzed by Cobalt‐Pincer Complexes. Advanced Synthesis & Catalysis 2024, 366, 2775–2783. doi:10.1002/adsc.202400309
  • Kopp, A.; Oyama, T.; Ackermann, L. Fluorescent coumarin-alkynes for labeling of amino acids and peptides via manganese(I)-catalyzed C-H alkenylation. Chemical communications (Cambridge, England) 2024, 60, 5423–5426. doi:10.1039/d4cc00361f
  • Park, S. First‐Row Transition Metal‐Catalyzed Single Hydroelementation of N‐Heteroarenes. ChemCatChem 2024, 16. doi:10.1002/cctc.202301422
  • Das, A.; Mandal, R.; Ravi Sankar, H. S.; Kumaran, S.; Premkumar, J. R.; Borah, D.; Sundararaju, B. Reversal of Regioselectivity in Asymmetric C-H Bond Annulation with Bromoalkynes under Cobalt Catalysis. Angewandte Chemie (International ed. in English) 2023, 63, e202315005. doi:10.1002/anie.202315005
  • Das, A.; Mandal, R.; Ravi Sankar, H. S.; Kumaran, S.; Premkumar, J. R.; Borah, D.; Sundararaju, B. Reversal of Regioselectivity in Asymmetric C−H Bond Annulation with Bromoalkynes under Cobalt Catalysis**. Angewandte Chemie 2023, 136. doi:10.1002/ange.202315005
  • Madan, C.; Jha, S. R.; Katiyar, N. K.; Singh, A.; Mitra, R.; Tiwary, C. S.; Biswas, K.; Halder, A. Understanding the evolution of catalytically active multi-metal sites in a bifunctional high-entropy alloy electrocatalyst for zinc–air battery application. Energy Advances 2023, 2, 2055–2068. doi:10.1039/d3ya00356f
  • Maikhuri, V. K.; Rawat, M.; Rawat, D. S. Recent Advances in the 3 d‐Transition‐Metal‐Catalyzed Synthesis of Isoquinolines and its Derivatives. Advanced Synthesis & Catalysis 2023, 365, 4458–4494. doi:10.1002/adsc.202301239
  • Da Concepción, E.; Lázaro-Milla, C.; Fernández, I.; Mascareñas, J. L.; López, F. Cobalt(I)-Catalyzed (3 + 2 + 2) Cycloaddition between Alkylidenecyclopropanes, Alkynes, and Alkenes. Organic letters 2023, 25, 8372–8376. doi:10.1021/acs.orglett.3c03511
  • Muldakhmetov, Z. M.; Ordabaeva, A. T.; Meiramov, M. G.; Gazaliev, A. M.; Kim, S. V. Catalytic Hydrogenation of Anthracene on Binary (Bimetallic) Composite Catalysts. Catalysts 2023, 13, 957. doi:10.3390/catal13060957
  • Yuan, B.; Oliveira, J. C. A.; Ackermann, L. Understanding and Describing London Dispersion Effects in ­Transition-Metal-Catalyzed C–H Activations. Synlett 2023, 34, 1098–1112. doi:10.1055/a-2060-3288
Other Beilstein-Institut Open Science Activities