Trifluoromethylated hydrazones and acylhydrazones as potent nitrogen-containing fluorinated building blocks

  1. ORCID Logo
Department of Fire Protection Engineering, China Fire and Rescue Institute, Beijing 102202, P. R. of China
  1. Corresponding author email
Guest Editor: D. O'Hagan
Beilstein J. Org. Chem. 2023, 19, 1741–1754. https://doi.org/10.3762/bjoc.19.127
Received 02 Sep 2023, Accepted 03 Nov 2023, Published 15 Nov 2023
Review
cc by logo
Album

Abstract

Nitrogen-containing organofluorine derivatives, which are prepared using fluorinated building blocks, are among the most important active fragments in various pharmaceutical and agrochemical products. This review focuses on the reactivity, synthesis, and applications of fluoromethylated hydrazones and acylhydrazones. It summarizes recent methodologies that have been used for the synthesis of various nitrogen-containing organofluorine compounds.

Introduction

The introduction of fluorine into pharmaceuticals, agrochemicals, and materials can significantly enhance lipophilicity and metabolic stability compared to nonfluorinated compounds [1-5]. At present, about 300 drug molecules and over 400 pesticides on the market contain at least one fluorine atom [6,7]. Therefore, the development of novel and effective synthetic methodologies for the synthesis of organofluorine compounds has become a major research focus.

The use of difluoromethylating and trifluoromethylating reagents is a popular approach applied to prepare di/trifluoromethyl-containing molecules [8-18]. Also the reaction of diverse di/trifluoromethyl-containing building blocks offers another mainstream approach to introducing fluorine. Among these, di/trifluorodiazoethane [19-22], trifluoromethyl aldimines [23-25], trifluoroacetimidoyl halides [26], and fluoroalkyl N-sulfonyl hydrazones [27] have emerged as powerful nitrogen-containing fluorinated building blocks that have been used to construct organofluorine derivatives. To the best of our knowledge, the synthetic applications of fluoromethylated hydrazones and acylhydrazones as useful building blocks, has not yet been summarized. Hence, the present review highlights recent advancements enabling the synthesis of diverse di/trifluoromethyl-containing molecules by using di/trifluoromethylated hydrazones, acylhydrazones, and their related compounds.

Review

Trifluoroacetaldehyde hydrazones

Hydrazones possess diverse biological and pharmacological properties and have been employed in the treatment of several diseases [28-30]. They have also been applied in the field of materials science, especially for the synthesis of metal and covalent organic frameworks, dyes, hole-transporting materials and sensors, and in dynamic combinatorial chemistry [31], indicating a wide applicability. Hydrazones can be regarded as electrophilic and nucleophilic imine equivalents, and thus they represent valuable and versatile building blocks in synthetic chemistry [32-36].

Trifluoroacetaldehyde hydrazones can be regarded as an equivalent of fluorine-containing azomethine imines in the presence of Brønsted acid. In their pioneering research, Tanaka et al. reported the [3 + 2] cycloaddition reactions of trifluoroacetaldehyde hydrazones and glyoxals to give 4-hydroxy-3-trifluoromethylpyrazoles. The resultant pyrazoles containing a free 4-hydroxy group were easily converted to a variety of other derivatives in good yields [37] (Scheme 1).

[1860-5397-19-127-i1]

Scheme 1: Synthesis of trifluoromethylpyrazoles from trifluoroacetaldehyde hydrazones.

Later, Wu et al. described a diastereoselective 1,3-dipolar cycloaddition of trifluoroacetaldehyde hydrazones with α,β-ethenyl ketones to obtain polysubstituted pyrazolidines and pyrazolines. These reactions were carried out under two different sets of conditions [38] (Scheme 2).

[1860-5397-19-127-i2]

Scheme 2: Synthesis of polysubstituted pyrazolidines and pyrazolines.

Moreover, a chiral Brønsted acid-catalyzed asymmetric 6π electrocyclization of trifluoroacetaldehyde hydrazones for the synthesis of enantiomerically enriched 3-trifluoromethyl-1,4-dihydropyridazines was first developed by Rueping et al. [39]. The strategy involves chiral ion pairs and provides a good basis and scope for further extensions and explorations [39] (Scheme 3).

[1860-5397-19-127-i3]

Scheme 3: Asymmetric synthesis of 3-trifluoromethyl-1,4-dihydropyridazines reported by Rueping et al. [39].

Based on the work by Wu et al. and extending their previous work, Rueping and co-workers explored the effects of fluorine in organocatalytic reactions. They developed an asymmetric Brønsted acid–Lewis base catalysis, for the synthesis of trifluoromethylated dihydropyridazines under simple reaction conditions and the chemistry displayed very good enantioselectivities and high functional group tolerance (Scheme 4) [40].

[1860-5397-19-127-i4]

Scheme 4: Synthesis of 3-trifluoromethyl-1,4-dihydropyridazine with Brønsted acid-assisted Lewis base catalysis.

Zhan et al. reported an efficient and highly selective method for the synthesis of CF3-pyrazoles and CF3-1,6-dihydropyridazines from readily available trifluoromethylated N-propargylic hydrazones. These reactions proceed through intermediate diazoallenes, and were conducted with catalytic PtCl4 [41] or AgOTf [42] (Scheme 5).

[1860-5397-19-127-i5]

Scheme 5: Synthesis of CF3-pyrazoles and CF3-1,6-dihydropyridazines.

Their study explored the effects of fluorine through reactions with trifluoroacetaldehyde hydrazones. Jasiński et al. demonstrated that the CF3 group offered an appropriate electronic balance through experimental spectral analysis and computational DFT methods, and the hydrazones could be readily used to provide convenient access to azo tautomers under the acidic conditions [43].

The C=N motif within hydrazones gives them both electrophilic and nucleophilic character. In 2005, Brigaud et al. developed a highly stereoselective method for the synthesis of α-trifluoromethylamines with organometallic reagents to extend the asymmetric methodologies of trifluoroacetaldehyde hydrazones [44] (Scheme 6).

[1860-5397-19-127-i6]

Scheme 6: Asymmetric reactions of trifluoromethylimines with organometallic reagents.

El Kaim and Jia reported a Mannich-type reaction of trifluoroacetaldehyde hydrazones with formaldehyde and aromatic aldehydes to obtain valuable starting materials for the generation of other trifluoromethyl-substituted heterocycles. The study demonstrated that the electron-withdrawing property of the trifluoromethyl group is key to this coupling reaction [45] (Scheme 7).

[1860-5397-19-127-i7]

Scheme 7: Mannich-type reaction of trifluoroacetaldehyde hydrazones.

Trifluoromethylated hydrazonoyl halides

Hydrazonoyl halides, which offer a reactive 1,3-dipole, can easily be transformed to nitrile imines in the presence of a base, and they have shown to be useful building blocks for the synthesis of heterocycles [46,47]. The resultant heterocycles bearing a fluorine or fluorine-containing group have been used in a broad array of pharmaceutical applications [48,49]. The use of di/trifluoromethylated hydrazonoyl halides as building blocks for the synthesis of di/trifluoromethylated organic molecules is equally attractive and proven to be important.

Generally, the reaction of trifluoroacetaldehyde hydrazones with N-chloro- and N-bromosuccinimide is used to prepare trifluoromethylated hydrazonoyl halides (Scheme 8a), or alternatively trichloroisocyanuric acid (TCCA) can be used as a chloride source for the preparation of these compounds [50] (Scheme 8b).

[1860-5397-19-127-i8]

Scheme 8: Synthesis of trifluoromethylated hydrazonoyl halides.

As early as in 1982, the reactivity of trifluoromethylated hydrazonoyl halides in the presence of base has been systematically studied by Tanaka et al. The trifluoromethylated hydrazonoyl halides, as the precursors of trifluoroacetonitrile imine, are highly versatile in that they react with olefins, acetylenes, dimethyl fumarate, dimethyl maleate, β-diketones, β-keto esters, bicyclic olefins, and potassium isothiocyanate and isocyanate affording the corresponding trifluoromethyl-containing compounds, generally with good yields [51-58] (Scheme 9).

[1860-5397-19-127-i9]

Scheme 9: Early work of trifluoromethylated hydrazonoyl halides.

Thioketones, thiochalcones, and tertiary thioamides react as C=S super dipolarophilic agents. Jasiński et al. reported that these thiocarbonyl compounds react with trifluoromethylated hydrazonoyl halides to give trifluoromethylated 1,3,4-thiadiazoles via regioselective [3 + 2] cycloadditions [59-63] (Scheme 10a). Similarly, trifluoroacetonitrile imine reacted with mercaptoacetaldehyde and mercaptocarboxylic acids to generate fluorinated 1,3,4-thiadiazines with good yields via a [3 + 3] annulation [64] (Scheme 10b).

[1860-5397-19-127-i10]

Scheme 10: [3 + 2]/[3 + 3] Cycloadditions of trifluoromethylated hydrazonoyl halides.

Meanwhile, mercaptoacetaldehyde as a surrogate of acetylene reacted with trifluoroacetonitrile imine to form 1-aryl-3-trifluoromethylpyrazoles, followed by a series of cascade annulation/dehydration/ring contraction reactions when treated with p-TsCl [65] (Scheme 10b).

The chemistry of pyrazoles with a fluorine or a fluoroalkylated group has attracted a significant level of attention, and many trifluoromethylated pyrazoles have been used in medicinal products or in pesticides [66]. The [3 + 2] cycloaddition reactions are considered among the most powerful tools for the synthesis of versatile fluoroalkylated pyrazoles. Enol ethers, 1,4-naphthoquinones, o-trimethylsilylphenyl triflate and chalcones have all been reacted with fluorinated nitrile imines to give a series of fluoroalkylated pyrazoles by Jasiński’s team [67-72] (Scheme 11a).

[1860-5397-19-127-i11]

Scheme 11: Substrate scope for [3 + 2] cycloadditions with trifluoroacetonitrile imines reported by Jasiński’s team and other groups.

Subsequently, Hu et al., Nie et al., and Ma et al. have all independently reported practical methods, which extended the structural scope of such dipoles. This has allowed the synthesis of trifluoromethylpyrazoles by a range of regioselective [3 + 2] cycloadditions of trifluoroacetonitrile imines with electron-poor olefins [73-76] (Scheme 11b).

Moreover, the trifluoromethylated 1,2,4-triazoles were synthesized with excellent regioselectivities in [3 + 2] cycloaddition reactions of trifluoromethylated hydrazonoyl chlorides with imidates, amidine and 1H-benzo[d]imidazole-2-thiols, all of which were individually reported by Wang, Deng and Cai, respectively [77-79] (Scheme 12a). Meanwhile, the Jasiński group turned their attention to the [3 + 3] cycloaddition of α-amino esters and trifluoromethylated hydrazonoyl halides and demonstrated the efficient synthesis of trifluoromethylated 1,2,4-triazine derivatives [80] (Scheme 12b).

[1860-5397-19-127-i12]

Scheme 12: Synthesis of trifluoromethylated 1,2,4-triazole and 1,2,4-triazine derivatives.

Difluoromethylated compounds play an indispensable role in drug discovery and design since the hydrogen atom can act as lipophilic hydrogen-bond donor and act as a bioisostere for the alcohol moiety [81-83]. Thus, many effective difluoromethylation strategies have been developed in recent years. Difluoroacetohydrazonoyl bromides were chosen as fluorinated building blocks for the synthesis of difluoromethylated pyrazole derivatives by such [3 + 2] cycloaddition reactions [73,84,85] (Scheme 13).

[1860-5397-19-127-i13]

Scheme 13: [3 + 2] Cycloadditions of difluoromethylated hydrazonoyl halides.

These studies therefore emphasize that fluoromethylated nitrile imines are versatile building blocks for [3 + 2] and [3 + 3] cycloaddition reactions and indicate their potential offering an efficient approach to fluoroalkylated heterocycles in drug design.

Trifluoromethylated acylhydrazonoes

Acylhydrazones are a well-established class of organic compounds with the –CONH–N=CH– structure, and some variants show potential pesticidal and pharmacological activities [86,87]. Acylhydrazones can exist in either E or Z forms in solution, and they can exhibit good optical properties for applications as photoswitches, in luminescence sensing, and as metallo-assemblies [88,89]. In organic synthesis, acylhydrazones have served as stable imine equivalents to react with various nucleophilic reagents [90].

In 2014, Heimgartner et al. first developed the condensation reaction of a commercially available fluoral hemiacetal with acylhydrazides to yield trifluoromethylated acylhydrazones, and these fluorinated compounds underwent heterocyclization reactions with mercaptoacetic acid and acetic anhydride leading to trifluoromethylated 1,3-thiazolidin-4-ones and 3-acetyl-2,3-dihydro-1,3,4-oxadiazoles, respectively. It was found that the C=N reactivity of the trifluoromethylated acylhydrazones is similar to that of other nitrogen-containing fluorinated building blocks [91] (Scheme 14).

[1860-5397-19-127-i14]

Scheme 14: Preparation and early applications of trifluoromethylated acylhydrazones.

Inspired by previous accounts and this work [92,93], Hu et al. explored 1,2- nucleophilic addition reactions of trifluoromethylated acylhydrazones with organometallic reagents for the synthesis of trifluorinated homoallylic acylhydrazines [94-98], trifluorinated α-methylene-γ-lactams [99,100], and β-trifluoromethyl-β-acylhydrazonyl carbonyl compounds [101] (Scheme 15).

[1860-5397-19-127-i15]

Scheme 15: 1,2-Nucleophilic addition reactions of trifluoromethylated acylhydrazones.

Among these fluorinated products, the trifluoromethylated homoallylic acylhydrazines were easily transformed to CF3-substituted pyrazolines and 1,6-dihydropyridazines via a cascade oxidation/cyclization with NXS or Cu(OAc)2. Notably, some of the resultant CF3-substituted 1,6-dihydropyridazines exhibited aggregation-induced emission [102,103] (Scheme 16).

[1860-5397-19-127-i16]

Scheme 16: Cascade oxidation/cyclization reactions of trifluoromethylated homoallylic acylhydrazines.

The hydrocyanation of acylhydrazones is an important method for the preparation of α-hyrazino acids. Hu et al. reported a Lewis acid-catalyzed hydrocyanation of trifluoromethylated acylhydrazones, in which the product was the precursor for the preparation of chiral fluorinated amino acids [104] (Scheme 17a).

[1860-5397-19-127-i17]

Scheme 17: Synthesis of trifluoromethylated cyanohydrazines and 3-trifluoromethyl-1,2,4-triazolines.

Meanwhile, Hu et al. provided a novel and efficient process for the synthesis of polysubstituted 3-trifluoromethyl-1,2,4-triazolines and their derivatives via tandem 1,2-addition/cyclization reactions between trifluoromethyl acylhydrazones and cyanamide [105] (Scheme 17b).

Afterwards, Hu et al. developed a method for the N-arylation and N-alkylation of trifluoromethyl acylhydrazones with diaryliodonium salts and alkyl halides under basic conditions, and expanded the synthetic method to N-substituted acylhydrazones [106,107] (Scheme 18).

[1860-5397-19-127-i18]

Scheme 18: N-Arylation and N-alkylation of trifluoromethyl acylhydrazones.

In the early development of 1,3-dipolar cycloadditions of azomethine imines, the acyclic azomethine imines were unstable and their in situ preparation required Brønsted acid or thermal activation [108-110]. Besides, pyrazolidine and pyrazoline compounds are highly valuable hereocycles which are found in many natural products and bioactive compounds. Among them, CF3-substituted pyrazolidines have already been shown to be highly bioactive [111-113]. Thus, Hu et al. chose trifluoromethyl acylhydrazones as 1,3-dipolar agents to react with β-nitrostyrenes [114], maleates [115], cyclopentadiene [116] and maleimides [117] for the synthesis of CF3-substituted pyrazolidine derivatives. These reactions were conducted under basic conditions and in the presence of Cu(OTf)2 (Scheme 19a).

[1860-5397-19-127-i19]

Scheme 19: [3 + 2]-Cycladditions of trifluoromethyl acylhydrazones.

As an extension of their trifluoromethyl acylhydrazone synthesis, Hu et al. reported that trifluoromethyl acylhydrazones react with azomethine ylides [118] and ethyl isocyanoacetate [119] to generate trifluoromethylated imidazolidines. They demonstrated then that trifluoromethyl acylhydrazones act as dipolarophiles in the [3 + 2]-cycladditions (Scheme 19b).

Conclusion

Fluorine-containing molecules have attracted widespread attention as important components of agrochemicals, pharmaceuticals, and advanced materials. Abundant and fruitful progress in the applications of fluoromethylated hydrazones and acylhydrazones in recent years have been summarized and discussed. The resultant fluorinated building blocks provided a facile and rapid approach to directly construct valuable nitrogen-containing fluorinated compounds. Apart from the regular involvement of addition and annulation reactions, the exploitation of more in-depth applications of fluoromethylated hydrazones and acylhydrazones to synthesize natural product analogues and fluorinated drugs is highly desirable. These methods should encourage the introduction of these difluoromethylated nitrogen-containing building blocks in future bioactives discovery programs.

References

  1. O'Hagan, D. Chem. Soc. Rev. 2008, 37, 308–319. doi:10.1039/b711844a
    Return to citation in text: [1]
  2. Hunter, L. Beilstein J. Org. Chem. 2010, 6, No. 38. doi:10.3762/bjoc.6.38
    Return to citation in text: [1]
  3. Meanwell, N. A. J. Med. Chem. 2018, 61, 5822–5880. doi:10.1021/acs.jmedchem.7b01788
    Return to citation in text: [1]
  4. Hagmann, W. K. J. Med. Chem. 2008, 51, 4359–4369. doi:10.1021/jm800219f
    Return to citation in text: [1]
  5. Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceña, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Chem. Rev. 2016, 116, 422–518. doi:10.1021/acs.chemrev.5b00392
    Return to citation in text: [1]
  6. Inoue, M.; Sumii, Y.; Shibata, N. ACS Omega 2020, 5, 10633–10640. doi:10.1021/acsomega.0c00830
    Return to citation in text: [1]
  7. Ogawa, Y.; Tokunaga, E.; Kobayashi, O.; Hirai, K.; Shibata, N. iScience 2020, 23, 101467. doi:10.1016/j.isci.2020.101467
    Return to citation in text: [1]
  8. Ma, R.; Deng, Z.; Wang, K.; Huang, D.; Hu, Y.; Lü, X. Chin. J. Org. Chem. 2022, 42, 353–362. doi:10.6023/cjoc202108058
    Return to citation in text: [1]
  9. Qing, F.-L.; Liu, X.-Y.; Ma, J.-A.; Shen, Q.; Song, Q.; Tang, P. CCS Chem. 2022, 4, 2518–2549. doi:10.31635/ccschem.022.202201935
    Return to citation in text: [1]
  10. Xie, Q.; Hu, J. Chin. J. Chem. 2020, 38, 202–212. doi:10.1002/cjoc.201900424
    Return to citation in text: [1]
  11. Reichel, M.; Karaghiosoff, K. Angew. Chem., Int. Ed. 2020, 59, 12268–12281. doi:10.1002/anie.201913175
    Return to citation in text: [1]
  12. Zhang, C. Org. Biomol. Chem. 2014, 12, 6580–6589. doi:10.1039/c4ob00671b
    Return to citation in text: [1]
  13. Chu, L.; Qing, F.-L. Acc. Chem. Res. 2014, 47, 1513–1522. doi:10.1021/ar4003202
    Return to citation in text: [1]
  14. Liu, X.; Xu, C.; Wang, M.; Liu, Q. Chem. Rev. 2015, 115, 683–730. doi:10.1021/cr400473a
    Return to citation in text: [1]
  15. Zhang, C. Adv. Synth. Catal. 2014, 356, 2895–2906. doi:10.1002/adsc.201400370
    Return to citation in text: [1]
  16. Kaboudin, B.; Ghashghaee, M.; Bigdeli, A.; Farkhondeh, A.; Eskandari, M.; Esfandiari, H. ChemistrySelect 2021, 6, 12998–13014. doi:10.1002/slct.202103867
    Return to citation in text: [1]
  17. Charpentier, J.; Früh, N.; Togni, A. Chem. Rev. 2015, 115, 650–682. doi:10.1021/cr500223h
    Return to citation in text: [1]
  18. Ni, C.; Hu, M.; Hu, J. Chem. Rev. 2015, 115, 765–825. doi:10.1021/cr5002386
    Return to citation in text: [1]
  19. Mykhailiuk, P. K. Chem. Rev. 2020, 120, 12718–12755. doi:10.1021/acs.chemrev.0c00406
    Return to citation in text: [1]
  20. Kumar, A.; Khan, W. A.; Ahamad, S.; Mohanan, K. J. Heterocycl. Chem. 2022, 59, 607–632. doi:10.1002/jhet.4416
    Return to citation in text: [1]
  21. Mykhailiuk, P. K.; Koenigs, R. M. Chem. – Eur. J. 2019, 25, 6053–6063. doi:10.1002/chem.201804953
    Return to citation in text: [1]
  22. Bos, M.; Poisson, T.; Pannecoucke, X.; Charette, A. B.; Jubault, P. Chem. – Eur. J. 2017, 23, 4950–4961. doi:10.1002/chem.201604564
    Return to citation in text: [1]
  23. Nie, J.; Guo, H.-C.; Cahard, D.; Ma, J.-A. Chem. Rev. 2011, 111, 455–529. doi:10.1021/cr100166a
    Return to citation in text: [1]
  24. Fioravanti, S. Tetrahedron 2016, 72, 4449–4489. doi:10.1016/j.tet.2016.06.015
    Return to citation in text: [1]
  25. Sun, Z.; Zhang, C.; Chen, L.; Xie, H.; Liu, B.; Liu, D. Chin. J. Org. Chem. 2021, 41, 1789–1803. doi:10.6023/cjoc202011005
    Return to citation in text: [1]
  26. Chen, Z.; Hu, S.; Wu, X.-F. Org. Chem. Front. 2020, 7, 223–254. doi:10.1039/c9qo01167f
    Return to citation in text: [1]
  27. Sivaguru, P.; Bi, X. Sci. China: Chem. 2021, 64, 1614–1629. doi:10.1007/s11426-021-1052-7
    Return to citation in text: [1]
  28. de Oliveira Carneiro Brum, J.; França, T. C. C.; LaPlante, S. R.; Villar, J. D. F. Mini-Rev. Med. Chem. 2020, 20, 342–368. doi:10.2174/1389557519666191014142448
    Return to citation in text: [1]
  29. Verma, G.; Marella, A.; Shaquiauzzaman, M.; Akhtar, M.; Ali, M. R.; Alam, M. M. J. Pharm. BioAllied Sci. 2014, 6, 69–80. doi:10.4103/0975-7406.129170
    Return to citation in text: [1]
  30. Rollas, S.; Küçükgüzel, Ş. G. Molecules 2007, 12, 1910–1939. doi:10.3390/12081910
    Return to citation in text: [1]
  31. Su, X.; Aprahamian, I. Chem. Soc. Rev. 2014, 43, 1963–1981. doi:10.1039/c3cs60385g
    Return to citation in text: [1]
  32. Kobayashi, S.; Mori, Y.; Fossey, J. S.; Salter, M. M. Chem. Rev. 2011, 111, 2626–2704. doi:10.1021/cr100204f
    Return to citation in text: [1]
  33. Kölmel, D. K.; Kool, E. T. Chem. Rev. 2017, 117, 10358–10376. doi:10.1021/acs.chemrev.7b00090
    Return to citation in text: [1]
  34. Xu, P.; Li, W.; Xie, J.; Zhu, C. Acc. Chem. Res. 2018, 51, 484–495. doi:10.1021/acs.accounts.7b00565
    Return to citation in text: [1]
  35. Lv, Y.; Meng, J.; Li, C.; Wang, X.; Ye, Y.; Sun, K. Adv. Synth. Catal. 2021, 363, 5235–5265. doi:10.1002/adsc.202101184
    Return to citation in text: [1]
  36. Latrache, M.; Hoffmann, N. Chem. Soc. Rev. 2021, 50, 7418–7435. doi:10.1039/d1cs00196e
    Return to citation in text: [1]
  37. Iwata, S.; Namekata, J.; Tanaka, K.; Mitsuhashi, K. J. Heterocycl. Chem. 1991, 28, 1971–1976. doi:10.1002/jhet.5570280830
    Return to citation in text: [1]
  38. Xie, H.; Zhu, J.; Chen, Z.; Li, S.; Wu, Y. Synthesis 2011, 2767–2774. doi:10.1055/s-0030-1260127
    Return to citation in text: [1]
  39. Das, A.; Volla, C. M. R.; Atodiresei, I.; Bettray, W.; Rueping, M. Angew. Chem., Int. Ed. 2013, 52, 8008–8011. doi:10.1002/anie.201301638
    Return to citation in text: [1] [2] [3]
  40. Volla, C. M. R.; Das, A.; Atodiresei, I.; Rueping, M. Chem. Commun. 2014, 50, 7889–7892. doi:10.1039/c4cc03229b
    Return to citation in text: [1]
  41. Wen, J.-J.; Tang, H.-T.; Xiong, K.; Ding, Z.-C.; Zhan, Z.-P. Org. Lett. 2014, 16, 5940–5943. doi:10.1021/ol502968c
    Return to citation in text: [1]
  42. Ding, Z.-C.; Ju, L.-C.; Yang, Y.; An, X.-M.; Zhou, Y.-B.; Li, R.-H.; Tang, H.-T.; Ding, C.-K.; Zhan, Z.-P. J. Org. Chem. 2016, 81, 3936–3941. doi:10.1021/acs.joc.6b00428
    Return to citation in text: [1]
  43. Wojciechowska, A.; Jasiński, M.; Kaszyński, P. Tetrahedron 2015, 71, 2349–2356. doi:10.1016/j.tet.2015.03.015
    Return to citation in text: [1]
  44. Fries, S.; Pytkowicz, J.; Brigaud, T. Tetrahedron Lett. 2005, 46, 4761–4764. doi:10.1016/j.tetlet.2005.05.040
    Return to citation in text: [1]
  45. Jia, S.; El Kaim, L. Org. Biomol. Chem. 2018, 16, 1457–1460. doi:10.1039/c7ob02840g
    Return to citation in text: [1]
  46. Sayed, A. R.; Ali, S. H.; Gomha, S. M.; Al-Faiyz, Y. S. Synth. Commun. 2020, 50, 3175–3203. doi:10.1080/00397911.2020.1799016
    Return to citation in text: [1]
  47. Farghaly, T. A.; Abdallah, M. A.; Mahmoud, H. K. Curr. Org. Synth. 2017, 14, 430–461. doi:10.2174/1570179413666160624105624
    Return to citation in text: [1]
  48. Fustero, S.; Sanz-Cervera, J. F.; Aceña, J. L.; Sánchez-Roselló, M. Synlett 2009, 525–549. doi:10.1055/s-0028-1087806
    Return to citation in text: [1]
  49. Zheng, Z.; Dai, A.; Jin, Z.; Chi, Y. R.; Wu, J. J. Agric. Food Chem. 2022, 70, 11019–11030. doi:10.1021/acs.jafc.1c08383
    Return to citation in text: [1]
  50. Zong, W.; Hu, Y.; Wang, X.; Liu, J.; Huang, D.; Wang, K. Chin. J. Org. Chem. 2019, 39, 1396–1403. doi:10.6023/cjoc201811039
    Return to citation in text: [1]
  51. Tanaka, K.; Maeno, S.; Mitsuhashi, K. Chem. Lett. 1982, 11, 543–546. doi:10.1246/cl.1982.543
    Return to citation in text: [1]
  52. Tanaka, K.; Maeno, S.; Mitsuhashi, K. J. Heterocycl. Chem. 1985, 22, 565–568. doi:10.1002/jhet.5570220271
    Return to citation in text: [1]
  53. Tanaka, K.; Maeno, S.; Mitsuhashi, K. Bull. Chem. Soc. Jpn. 1985, 58, 1841–1842. doi:10.1246/bcsj.58.1841
    Return to citation in text: [1]
  54. Tanaka, K.; Kishida, M.; Maeno, S.; Mitsuhashi, K. Bull. Chem. Soc. Jpn. 1986, 59, 2631–2632. doi:10.1246/bcsj.59.2631
    Return to citation in text: [1]
  55. Tanaka, K.; Suzuki, T.; Maeno, S.; Mitsuhashi, K. J. Heterocycl. Chem. 1986, 23, 1535–1538. doi:10.1002/jhet.5570230556
    Return to citation in text: [1]
  56. Tanaka, K.; Masuda, H.; Mitsuhashi, K. Bull. Chem. Soc. Jpn. 1986, 59, 3901–3904. doi:10.1246/bcsj.59.3901
    Return to citation in text: [1]
  57. Tanaka, K.; Honda, O.; Minoguchi, K.; Mitsuhashi, K. J. Heterocycl. Chem. 1987, 24, 1391–1396. doi:10.1002/jhet.5570240532
    Return to citation in text: [1]
  58. Tanaka, K.; Suzuki, T.; Maeno, S.; Mitsuhashi, K. Bull. Chem. Soc. Jpn. 1987, 60, 4480–4482. doi:10.1246/bcsj.60.4480
    Return to citation in text: [1]
  59. Mlostoń, G.; Urbaniak, K.; Utecht, G.; Lentz, D.; Jasiński, M. J. Fluorine Chem. 2016, 192, 147–154. doi:10.1016/j.jfluchem.2016.10.018
    Return to citation in text: [1]
  60. Utecht, G.; Sioma, J.; Jasiński, M.; Mlostoń, G. J. Fluorine Chem. 2017, 201, 68–75. doi:10.1016/j.jfluchem.2017.07.014
    Return to citation in text: [1]
  61. Grzelak, P.; Utecht, G.; Jasiński, M.; Mlostoń, G. Synthesis 2017, 49, 2129–2137. doi:10.1055/s-0036-1588774
    Return to citation in text: [1]
  62. Heimgartner, H.; Jasiński, M.; Utecht-Jarzyńska, G.; Świątek, K.; Mlostoń, G. Heterocycles 2020, 101, 251–262. doi:10.3987/com-19-s(f)20
    Return to citation in text: [1]
  63. Utecht-Jarzyńska, G.; Mykhaylychenko, S. S.; Rusanov, E. B.; Shermolovich, Y. G.; Jasiński, M.; Mlostoń, G. J. Fluorine Chem. 2021, 242, 109702. doi:10.1016/j.jfluchem.2020.109702
    Return to citation in text: [1]
  64. Utecht-Jarzyńska, G.; Michalak, A.; Banaś, J.; Mlostoń, G.; Jasiński, M. J. Fluorine Chem. 2019, 222–223, 8–14. doi:10.1016/j.jfluchem.2019.04.012
    Return to citation in text: [1]
  65. Świątek, K.; Utecht-Jarzyńska, G.; Palusiak, M.; Ma, J.-A.; Jasiński, M. Org. Lett. 2023, 25, 4462–4467. doi:10.1021/acs.orglett.3c01437
    Return to citation in text: [1]
  66. Mykhailiuk, P. K. Chem. Rev. 2021, 121, 1670–1715. doi:10.1021/acs.chemrev.0c01015
    Return to citation in text: [1]
  67. Utecht, G.; Mlostoń, G.; Jasiński, M. A. Synlett 2018, 29, 1753–1758. doi:10.1055/s-0037-1610454
    Return to citation in text: [1]
  68. Utecht, G.; Fruziński, A.; Jasiński, M. Org. Biomol. Chem. 2018, 16, 1252–1257. doi:10.1039/c7ob03126b
    Return to citation in text: [1]
  69. Utecht-Jarzyńska, G.; Nagła, K.; Mlostoń, G.; Heimgartner, H.; Palusiak, M.; Jasiński, M. Beilstein J. Org. Chem. 2021, 17, 1509–1517. doi:10.3762/bjoc.17.108
    Return to citation in text: [1]
  70. Kowalczyk, A.; Utecht-Jarzyńska, G.; Mlostoń, G.; Jasiński, M. J. Fluorine Chem. 2021, 241, 109691. doi:10.1016/j.jfluchem.2020.109691
    Return to citation in text: [1]
  71. Kowalczyk, A.; Utecht-Jarzyńska, G.; Mlostoń, G.; Jasiński, M. Org. Lett. 2022, 24, 2499–2503. doi:10.1021/acs.orglett.2c00521
    Return to citation in text: [1]
  72. Utecht-Jarzyńska, G.; Kowalczyk, A.; Jasiński, M. Molecules 2022, 27, 8446. doi:10.3390/molecules27238446
    Return to citation in text: [1]
  73. Wang, K.-H.; Liu, H.; Liu, X.; Bian, C.; Wang, J.; Su, Y.; Huang, D.; Hu, Y. Asian J. Org. Chem. 2022, e202200103. doi:10.1002/ajoc.202200103
    Return to citation in text: [1] [2]
  74. Zhang, N.; Ma, H.; Cheung, C. W.; Zhang, F.-G.; Jasiński, M.; Ma, J.-A.; Nie, J. Org. Biomol. Chem. 2023, 21, 5040–5045. doi:10.1039/d3ob00644a
    Return to citation in text: [1]
  75. Tian, Y.-C.; Li, J.-K.; Zhang, F.-G.; Ma, J.-A. Adv. Synth. Catal. 2021, 363, 2093–2097. doi:10.1002/adsc.202100091
    Return to citation in text: [1]
  76. Zhou, Y.; Gao, C.-F.; Ma, H.; Nie, J.; Ma, J.-A.; Zhang, F.-G. Chem. – Asian J. 2022, 17, e202200436. doi:10.1002/asia.202200436
    Return to citation in text: [1]
  77. Zhang, Y.; Zeng, J.-L.; Chen, Z.; Wang, R. J. Org. Chem. 2022, 87, 14514–14522. doi:10.1021/acs.joc.2c01926
    Return to citation in text: [1]
  78. Wang, D.; Wan, X.; Zhou, Y.; Liu, J.; Cai, J.; Deng, G.-J. Asian J. Org. Chem. 2023, 12, e202200674. doi:10.1002/ajoc.202200674
    Return to citation in text: [1]
  79. Cen, K.; Wei, J.; Feng, Y.; Liu, Y.; Wang, X.; Liu, Y.; Yin, Y.; Yu, J.; Wang, D.; Cai, J. Org. Biomol. Chem. 2023, 21, 7095–7099. doi:10.1039/d3ob01133j
    Return to citation in text: [1]
  80. Kowalczyk, A.; Świątek, K.; Celeda, M.; Utecht-Jarzyńska, G.; Jaskulska, A.; Gach-Janczak, K.; Jasiński, M. Materials 2023, 16, 856. doi:10.3390/ma16020856
    Return to citation in text: [1]
  81. Zafrani, Y.; Yeffet, D.; Sod-Moriah, G.; Berliner, A.; Amir, D.; Marciano, D.; Gershonov, E.; Saphier, S. J. Med. Chem. 2017, 60, 797–804. doi:10.1021/acs.jmedchem.6b01691
    Return to citation in text: [1]
  82. Sessler, C. D.; Rahm, M.; Becker, S.; Goldberg, J. M.; Wang, F.; Lippard, S. J. J. Am. Chem. Soc. 2017, 139, 9325–9332. doi:10.1021/jacs.7b04457
    Return to citation in text: [1]
  83. Zafrani, Y.; Saphier, S.; Gershonov, E. Future Med. Chem. 2020, 12, 361–365. doi:10.4155/fmc-2019-0309
    Return to citation in text: [1]
  84. Han, T.; Wang, K.-H.; Yang, M.; Zhao, P.; Wang, F.; Wang, J.; Huang, D.; Hu, Y. J. Org. Chem. 2022, 87, 498–511. doi:10.1021/acs.joc.1c02521
    Return to citation in text: [1]
  85. Ren, Y.; Ma, R.; Feng, Y.; Wang, K.-H.; Wang, J.; Huang, D.; Lv, X.; Hu, Y. Asian J. Org. Chem. 2022, 11, e202200438. doi:10.1002/ajoc.202200438
    Return to citation in text: [1]
  86. Xie, J.; Xu, W.; Song, H.; Liu, Y.; Zhang, J.; Wang, Q. J. Agric. Food Chem. 2020, 68, 5555–5571. doi:10.1021/acs.jafc.0c00875
    Return to citation in text: [1]
  87. Thota, S.; Rodrigues, D. A.; de Sena Murteira Pinheiro, P.; Lima, L. M.; Fraga, C. A. M.; Barreiro, E. J. Bioorg. Med. Chem. Lett. 2018, 28, 2797–2806. doi:10.1016/j.bmcl.2018.07.015
    Return to citation in text: [1]
  88. Moreno, M.; Gelabert, R.; Lluch, J. M. Phys. Chem. Chem. Phys. 2019, 21, 16075–16082. doi:10.1039/c9cp03324f
    Return to citation in text: [1]
  89. de Oliveira, W. A.; Mezalira, D. Z.; Westphal, E. Liq. Cryst. 2021, 48, 88–99. doi:10.1080/02678292.2020.1766135
    Return to citation in text: [1]
  90. Sugiura, M.; Kobayashi, S. Angew. Chem., Int. Ed. 2005, 44, 5176–5186. doi:10.1002/anie.200500691
    Return to citation in text: [1]
  91. Mlostoń, G.; Urbaniak, K.; Jacaszek, N.; Linden, A.; Heimgartner, H. Heterocycles 2014, 88, 387–401. doi:10.3987/com-13-s(s)40
    Return to citation in text: [1]
  92. Kobayashi, S.; Sugiura, M.; Ogawa, C. Adv. Synth. Catal. 2004, 346, 1023–1034. doi:10.1002/adsc.200404101
    Return to citation in text: [1]
  93. Elaas, N. A.; Elaas, W. A.; Huang, D.; Hu, Y.; Wang, K.-H. Curr. Org. Synth. 2017, 14, 1156–1171. doi:10.2174/1570179414666170201150313
    Return to citation in text: [1]
  94. Du, G.; Huang, D.; Wang, K.-H.; Chen, X.; Xu, Y.; Ma, J.; Su, Y.; Fu, Y.; Hu, Y. Org. Biomol. Chem. 2016, 14, 1492–1500. doi:10.1039/c5ob02260f
    Return to citation in text: [1]
  95. Li, J.; Yang, T.; Zhang, H.; Huang, D.; Wang, K.; Su, Y.; Hu, Y. Chin. J. Org. Chem. 2017, 37, 925–935. doi:10.6023/cjoc201611009
    Return to citation in text: [1]
  96. Wang, K.; Wang, Y.; Yin, X.; Peng, X.; Huang, D.; Su, Y.; Hu, Y. Chin. J. Org. Chem. 2017, 37, 1764–1773. doi:10.6023/cjoc201612042
    Return to citation in text: [1]
  97. Liu, J.; Huang, D.; Wang, X.; Zong, W.; Su, Y.; Wang, K.; Hu, Y. Chin. J. Org. Chem. 2019, 39, 1767–1775. doi:10.6023/cjoc201901007
    Return to citation in text: [1]
  98. Hu, Y.; Huang, D.; Wang, K.; Zhao, Z.; Zhao, F.; Xu, W.; Hu, Y. Chin. J. Org. Chem. 2020, 40, 1689–1696. doi:10.6023/cjoc201912006
    Return to citation in text: [1]
  99. Li, J.; Huang, D.; Zhang, H.; Zhang, X.; Wang, J.; Wang, K.-H.; Su, Y.; Hu, Y. Chin. J. Org. Chem. 2017, 37, 2985–2992. doi:10.6023/cjoc201703050
    Return to citation in text: [1]
  100. Wang, K.-H.; Wang, J.; Wang, Y.; Su, Y.; Huang, D.; Fu, Y.; Du, Z.; Hu, Y. Synthesis 2018, 50, 1907–1913. doi:10.1055/s-0036-1591909
    Return to citation in text: [1]
  101. Wang, K.-H.; Shi, B.; Wang, Y.; Wang, J.; Huang, D.; Su, Y.; Hu, Y. Asian J. Org. Chem. 2019, 8, 716–721. doi:10.1002/ajoc.201800693
    Return to citation in text: [1]
  102. Wang, Y.; Wang, K.-H.; Su, Y.; Yang, Z.; Wen, L.; Liu, L.; Wang, J.; Huang, D.; Hu, Y. J. Org. Chem. 2018, 83, 939–950. doi:10.1021/acs.joc.7b02934
    Return to citation in text: [1]
  103. Yang, T.; Deng, Z.; Wang, K.-H.; Li, P.; Huang, D.; Su, Y.; Hu, Y. J. Org. Chem. 2020, 85, 12304–12314. doi:10.1021/acs.joc.0c01568
    Return to citation in text: [1]
  104. Xu, W.; Huang, D.; Wang, K.; Zhao, F.; Zhao, Z.; Hu, Y.; Su, Y.; Hu, Y. Chin. J. Org. Chem. 2020, 40, 922–929. doi:10.6023/cjoc201910011
    Return to citation in text: [1]
  105. Liu, X.; Liu, H.; Bian, C.; Wang, K.-H.; Wang, J.; Huang, D.; Su, Y.; Lv, X.; Hu, Y. J. Org. Chem. 2022, 87, 5882–5892. doi:10.1021/acs.joc.2c00176
    Return to citation in text: [1]
  106. Zhang, H.; Wang, K.-H.; Wang, J.; Su, Y.; Huang, D.; Hu, Y. Org. Biomol. Chem. 2019, 17, 2940–2947. doi:10.1039/c9ob00236g
    Return to citation in text: [1]
  107. Yang, J.; Huang, D.; Wang, K.; Wang, J.; Su, Y.; Deng, Z.; Yang, T.; Hu, Y. Chin. J. Org. Chem. 2021, 41, 2029–2037. doi:10.6023/cjoc202011001
    Return to citation in text: [1]
  108. Nájera, C.; Sansano, J. M.; Yus, M. Org. Biomol. Chem. 2015, 13, 8596–8636. doi:10.1039/c5ob01086a
    Return to citation in text: [1]
  109. Hashimoto, T.; Maruoka, K. Chem. Rev. 2015, 115, 5366–5412. doi:10.1021/cr5007182
    Return to citation in text: [1]
  110. Yue, G.; Liu, B. Chin. J. Org. Chem. 2020, 40, 3132–3153. doi:10.6023/cjoc202005092
    Return to citation in text: [1]
  111. Behr, L. C.; Fusco, R.; Jarboe, C. H. In Pyrazoles, Pyrazolines, Pyrazolidines, Indazoles and Condensed Rings; Wiley, R. H., Ed.; The Chemistry of Heterocyclic Compounds, Vol. 22; Interscience Publishers: New York, NY, USA, 1967. doi:10.1002/9780470186848
    Return to citation in text: [1]
  112. Zhang, X.; Li, X.; Allan, G. F.; Sbriscia, T.; Linton, O.; Lundeen, S. G.; Sui, Z. J. Med. Chem. 2007, 50, 3857–3869. doi:10.1021/jm0613976
    Return to citation in text: [1]
  113. Reddy, M. V. R.; Billa, V. K.; Pallela, V. R.; Mallireddigari, M. R.; Boominathan, R.; Gabriel, J. L.; Reddy, E. P. Bioorg. Med. Chem. 2008, 16, 3907–3916. doi:10.1016/j.bmc.2008.01.047
    Return to citation in text: [1]
  114. Peng, X.; Huang, D.; Wang, K.-H.; Wang, Y.; Wang, J.; Su, Y.; Hu, Y. Org. Biomol. Chem. 2017, 15, 6214–6222. doi:10.1039/c7ob01299c
    Return to citation in text: [1]
  115. Wen, L.; Huang, D.; Wang, K.-H.; Wang, Y.; Liu, L.; Yang, Z.; Su, Y.; Hu, Y. Synthesis 2018, 50, 1979–1990. doi:10.1055/s-0036-1591768
    Return to citation in text: [1]
  116. Liu, L.; Huang, D.; Wang, Y.; Wen, L.; Yang, Z.; Su, Y.; Wang, K.; Hu, Y. Chin. J. Org. Chem. 2018, 38, 1469–1476. doi:10.6023/cjoc201712036
    Return to citation in text: [1]
  117. Feng, Y.; Chang, B.; Ren, Y.; Zhao, F.; Wang, K.-H.; Wang, J.; Huang, D.; Lv, X.; Hu, Y. Tetrahedron 2023, 136, 133353. doi:10.1016/j.tet.2023.133353
    Return to citation in text: [1]
  118. Zhao, F.; Wang, K.-H.; Wen, L.; Zhao, Z.; Hu, Y.; Xu, W.; Huang, D.; Su, Y.; Wang, J.; Hu, Y. Asian J. Org. Chem. 2020, 9, 1036–1039. doi:10.1002/ajoc.202000057
    Return to citation in text: [1]
  119. Yang, M.; Huang, D.; Wang, K.; Han, T.; Zhao, P.; Wang, F.; Wang, J.; Su, Y.; Hu, Y. Chin. J. Org. Chem. 2022, 42, 1509–1519. doi:10.6023/cjoc202111009
    Return to citation in text: [1]
Other Beilstein-Institut Open Science Activities